Cinética de adsorción para la remoción de mercurio usando residuos de yuca (Manhiot esculenta) y limón (Citrus limonum) modificados con ácido cítrico
PDF (Inglés)

Palabras clave

biomasa
mercurio
modificación química

Cómo citar

Cinética de adsorción para la remoción de mercurio usando residuos de yuca (Manhiot esculenta) y limón (Citrus limonum) modificados con ácido cítrico. (2015). Ingenieria Y Universidad, 19(2), 37-52. https://doi.org/10.11144/Javeriana.iyu19-2.kamr
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar

Resumen

Las altas concentraciones tóxicas de mercurio en los cuerpos de agua y su impacto negativo en el medio ambiente han generado la necesidad de estudiar métodos más económicos y eficaces para el tratamiento de los efluentes industriales, como es el caso de la adsorción. Esta investigación realizó un estudio de factibilidad, viabilidad y un comparativo entre las capacidades de adsorción de la cáscara de yuca y la cáscara de limón modificadas con ácido cítrico. Los resultados arrojaron que la cáscara de yuca modificada presenta una capacidad de adsorción mayor, en comparación con la cáscara de limón modificada. Los modelos cinéticos que más se ajustaron a los datos experimentales obtenidos fueron el modelo de seudosegundo orden y el de Elovich para las dos biomasas estudiadas modificadas, lo cual indica que el mecanismo controlante de la adsorción es una reacción de segundo orden y que la superficie catalítica del bioadsorbente es heterogénea; mientras que la isoterma de Freundlich describe mejor el proceso de adsorción. Se concluye que es posible el uso de materiales residuales para la remoción de Hg (II) y se sugiere el estudio de modificaciones químicas que puedan mejorar los porcentajes de adsorción.

PDF (Inglés)

[1] O. Higuera, L. C. Flórez and J. V. Arroyave, “Diseño de un biofiltro para reducir el índice de contaminación por cromo generado en las industrias del curtido de cueros”, Dyna, vol. 76, no. 160, pp. 107-119, 2009.
[2] A. G. González and O. S. Pokrovsky, “Metal adsorption on mosses. Toward a universal adsorption model”, Journal of Colloid and Interface Science, vol.415, pp. 169-178, 2014.
[3] A. Pérez, V. Meseguer, O. Sáenz and M. Llorens, “Biosorption of chromium (III) by Orange (Citrus cinensis) waste. Batch and continuous studies”. Chemical Engineering Journal, vol. 155, pp. 199-206, 2009.
[4] L. Wang and C. Lin, “Adsorption of chromium (III) ion from aqueous solution using rice hull ash”. Revista del Instituto Chino de Ingenieros Químicos, vol. 39, no. 4, pp. 367-373, 2008.
[5] J. Yang, C. Ling, L. Z. Liu, W. L. Shi and X. Z. Meng, “Comprehensive risk assessment of heavy metals in lake sediment from public parks in Shanghai”, Ecotoxicology and Environmental Safety, vol. 102, pp. 129-135, 2014.
[6] S. Luo, X. Li, L. Chen, J. Chen, Y. Wan and C. Liu, “Layer-by-layer strategy for adsorption capacity fattening of endophytic bacterial biomass for highly effective removal of heavy metals”, Chemical Engineering Journal, vol. 239, pp. 312-321, 2014.
[7] M. A. Capó, Principios de ecotoxicología. Madrid: McGraw Hill, 2002.
[8] M. Santarder y P. Tapia, “Biosorción de iones cobre con biomasa de algas y orujos deshidratados”, Rev. Metal. Madrid, vol. 45, pp. 365-374, 2011.
[9] M. Pinzón-Bedoya y A. Cardona, “Influencia del pH en la bioadsorción de Cr (III) sobre cáscara de naranja. Determinación de las condiciones de operación en proceso discontinuo”, Revista de la Facultad de Ciencias Básicas, vol. 8, no. 1, pp. 45-53, 2010.
[10] F. Baldi, M. Gallo and D. Marchetto, “Seasonal mercury transformation and surficial sediment detoxification by bacteria of Marano and Grado lagoons”, Estuarine Coastal Shelf Sci, 2012 [online]. Availabre: doi.org/10.1016/j.ecss.2012.02.008
[11] A. Hutchison and D. Atwood, “Mercury pollution and remediation. The chemist’s response to a global crisis”, J. Chem. Crystal, vol. 33, pp. 631-645, 2003.
[12] O. Parkash, S. Lafferty and R. Meagher, “Biotechnological approaches for phytoremediation”, in Plant Biotechnology and Agriculture, A. Altman and M. P. Hasegawa, Eds. Oxford: Academic Press, 2012, pp. 309-328.
[13] A. Le Jeune, F. Bourdiol and L Aldamman, “Factors affecting methyl mercury biomagnification by a widespread aquatic invertebrate predator, the phantom midge larvae Chaoborus”, Environ Pollut, vol. 165, pp. 100-108, 2012.
[14] S. Pandey and S. B. Mishra, “Organic-inorganic hybrid of chitosan/organoclay bionanocomposites for hexavalent chromium uptake”, Journal Colloid Interface Science, vol. 361, pp. 509-520, 2011.
[15] L. Khezami and R. Capart, “Removal of chromium (VI) from aqueous solution by activated carbons. Kinetic and equilibrium studies”, Journal of Hazard Material, vol. 123, pp. 223-231, 2005.
[16] R. M. Shrestha, I. Varga, J. Bajtai and M. Varga, “Design of surface functionalization of waste material originated charcoals by an optimized chemical carbonization for the purpose of heavy metal removal from industrial waste waters”, Microchemical Journal, vol. 108, pp. 224-232, 2013.
[17] M. Torab-Mostaedi, M. Asadollahzadeh, A. Hemmati and A. Khosravi, “Equilibrium, kinetic, and thermodynamic studies for biosorption of cadmium and nickel on grapefruit peel”, Journal of the Taiwan Institute of Chemical Engineers, vol. 44, pp. 295-302, 2013.
[18] M. Ajmal, R. Khan and J. Ahmad, “Adsorption studies on Citrus reticulate (fruit peel of orange). Removal and recovery of Ni (II) from electroplating wastewater”, Journal of Hazardous Materials, vol. 79, pp. 117-131, 2000.
[19] C. Villanueva y N. Tapia, “Bioadsorción de Cu (II) por biomasas que contienen pectina”, Revista Peruana de Química e Ingeniería Química, vol. 8, no. 1, 2005.
[20] F. J. Barragán, “Elaboración de un adsorbente de plomo y cadmio del agua a partir de los residuos de la industrialización del limón (Citrus aurantifoliaswingle)” [Tesis doctorado en ciencias de la F.C.B.A], Colima, México: Universidad de Colima, 2005.
[21] F. Colak, N. Atarb, D. Yazıcıoglu and A. Olgun, “Biosorption of lead from aqueous solutions by Bacillus strains possessing heavy-metal resistance”, Chemical Engineering Journal, vol. 173, no. 2, pp. 422-428, 2011.
[22] Y. Ho and C. Wang, “Sorption equilibrium of mercury onto ground-up tree fern”, Journal of Hazardous Materials, vol. 156, pp. 398-404, 2008.
[23] I. Ghodbane and O. Hamdaoui, “Removal of mercury (II) from aqueous media using eucalyptus bark. Kinetic and equilibrium studies”, Journal of Hazardous Materials, vol. 160, pp. 301-309, 2008.
[24] M. Lohani, A. Singh, D. Rupainwar and D. Dharc, “Studies on efficiency of guava (Psidiumguajava)bark as bioadsorbent for removal of Hg (II) from aqueous solutions”, Journal of Hazardous Materials, vol. 159, pp. 626-629, 2008.
[25] S. Basha, Z. P.V. Murthy and B. Jha, “Sorption of Hg (II) onto Carica papaya. Experimental studies and design of batch sorber”, Chemical Engineering Journal, vol. 147, pp. 226-234, 2009.
[26] C. Rocha, D. Morozin, R. da Silva, and A. da Silva, “Use of rice straw as biosorbent for removal of Cu(II), Zn(II), Cd(II) and Hg(II) ions in industrial effluents”, Journal of Hazardous Materials, vol. 166, pp. 383-388, 2009.
[27] M. Madhava, D. Kumar, P. Venkateswarlu and K. Seshaiah, “Removal of mercury from aqueous solutions using activated carbon prepared from agricultural by-product/waste”, Journal of Environmental Management, pp. 634-643, 2009.
[28] A. Neda, K. Tahereh and S. Mansooreh, “Elimination of mercury by adsorption onto activated carbon prepared from the biomass material”, Journal of Industrial and Engineering Chemistry, vol. 18, pp. 283-289, 2012.
[29] H. B. Asberry, C.-Y. Kuo, C.-H. Gung, E. D. Conte and S. Y. Suen, “Characterization of water bamboo husk biosorbents and their application in heavy metal ion trapping”, Microchemical Journal, vol. 113, pp. 59-63, 2014.
[30] S. Pitsari, E. Tsoufakis and M. Loizidou, “Enhanced lead adsorption by unbleached newspaper pulp modified”, Chemical Engineering Journal, vol. 223, pp. 18-30, 2013.
[31] K. Y. Foo and B. H. Hameed, “Preparation, characterization and evaluation of adsorptive properties of orange peel based activated carbon via microwave induced K2CO3 activation”, Bioresource Technology, vol. 104, pp. 679-686, 2011.
[32] A. Pérez, V. Meseguer, O. Sáenz and M. Llorens, “Biosorption of chromium (III) by Orange (Citrus cinensis) waste: Batch and continuous studies”, Chemical Engineering Journal, vol. 155, pp. 199-206, 2009.
[33] R. S. Vieira and M. Marisa, “Dynamic and static adsorption and desorption of Hg (II) ions on chitosan membranes and spheres”, Water Research, vol. 40, pp. 1726-1734, 2006.

Una vez aceptado un trabajo para publicación la revista podrá disponer de él en toda su extensión, tanto directamente como a través de intermediarios, ya sea de forma impresa o electrónica, para su publicación ya sea en medio impreso o en medio electrónico, en formatos electrónicos de almacenamiento, en sitios de la Internet propios o de cualquier otro editor. Este uso tiene como fin divulgar el trabajo en la comunidad científica y académica nacional e internacional y no persigue fines de lucro. Para ello el autor o los autores le otorgan el permiso correspondiente a la revista para dicha divulgación mediante autorización escrita.

Todos los articulos aceptados para publicación son sometidos a corrección de estilo. Por tanto el autor /los autores autorizan desde ya los cambios sufridos por el artículo en la corrección de estilo.

El autor o los autores conservarán los derechos morales y patrimoniales del artículo.