Effect of drying time, plasticizer concentration and particle size on the rupture force of semi-rigid materials based on thermoplastic cassava flour
PDF (Spanish)

Keywords

Biopolymers
plant polymers
cassavaprocessing

How to Cite

Effect of drying time, plasticizer concentration and particle size on the rupture force of semi-rigid materials based on thermoplastic cassava flour. (2012). Ingenieria Y Universidad, 15(2). https://doi.org/10.11144/Javeriana.iyu15-2.etsc
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar

Abstract

This article assesses semi-rigid biopolymers in terms of their tensile strength. Traction or tension tests were carried out to determine the máximum rupture force of materials made from native cassava flour (MCOL 2261), carboxymethyl cellulose and sorbitol. The experimental conditions were: sorbitol concentrations at 10, 15, 20 and 25%, drying times of 28,800, 50,400, 72,000 and 93,600 seconds at 40°C, and particle size of native cassava flour of 250, 425 and 600 μm The samples with 15% sorbitol, bigger particle size and longer drying time showed greater force at the breaking generated by tensile stress.

PDF (Spanish)

ÁLVAREZ, A. y SAAVEDRA, M. Formulación y obtención de productos extraídos a partir de harina de yuca. Tesis de pregrado. Cali: Universidad del Valle, Facultad de Ingeniería, 1997.
AMASH, A. y ZUGENMAIER, P. Morphology and properties of isotropic and oriented samples of cellulose fibre–polypropylene composites. Polymer, 2000, vol. 41, núm. 4, pp. 1589-1596.
ASTM D 638-08. 2008. Standard test method for tensile properties of plastics. West Conshohocken, Pennsylvania: American Society for Testing and Materials, 2008.
AVÉROUS, L. y LE DIGABEL, F. Properties of biocomposites based on lignocellulosic fillers. Carbohydrate Polymers, 2006, vol. 66, núm. 4, pp. 480-493.
AVÉROUS, L.; FRINGANT, C. y MORO, L. Plasticized starch-cellulose interactions in polysaccharide composites. Polymer, 2001, vol. 42, núm. 15, pp. 6565-6572.
BERGO, P. et ál. Physical properties of edible films based on cassava starch as affected by the plasticizer concentration. Packaging Technology and Science, 2008, vol. 21, núm. 2, pp. 85-89.
BODROS, E. et ál. Could biopolymers reinforced by randomly scattered flax fibre be used in structural applications? Composites Science and Technology, 2007, vol. 67, núm. 3-4, pp. 462-470.
CEBALLOS, H. La yuca en Colombia y el mundo. Nuevas perspectivas para un cultivo milenario (Capítulo 1). En: Ceballos, H. y Ospina, B. La yuca en el tercer milenio. Sistemas modernos de producción, procesamiento, utilización y comercialización. Palmira: CIAT, 2002, pp. 1-17.
CHA, J. et ál. Physical properties of starch-based foams as affected by extrusion temperature and moisture content. Industrial Crops and Products, 2001, vol. 14, núm. 1, pp. 23-30.
CHAUDHARY, D. y ADHIKARI, B. Effect of temperature and plasticizer molecular size on moisture diffusion of plasticized-starch biopolymer. Starch/Stärke, 2010, vol. 62, núm. 7, pp. 364-372.
CURVELO, A.; CARVALHO, A. y AGNELLI, J. Thermoplastic starch-cellulosic fibers composites: preliminary results. Carbohydrate Polymers, 2001, vol. 45, núm. 2, pp. 183-188.
FAO. Yuca para la seguridad alimentaria y energética [documento en línea]. Roma, 2008. <http://www.fao.org/newsroom/es/news/2008/1000899/index.html> [Consulta: 03-05-2010].
ICHAZO, M. et ál. Curing and physical properties of natural rubber/ wood flour composites. Macromolecular Symposia, Special Issue: Advanced Polymers, Composites and Technologies, 2006, vol. 239, núm. 1, pp. 192-200.
LAWTON, J.; SHOGREN, R. y TIEFENBACHER, K. Aspen fiber addition improves the mechanical properties of baked cornstarch foams. Industrial Crops and Products, 2004, vol. 19, núm. 1, pp. 41-48.
LINDEBOOM, N.; CHANG, P. y TYLER, R. analytical, biochemical and physicochemical aspects of starch granule size, with emphasis on small granule starches. A review. Starch/Stärke, 2004, vol. 56, núms. 3-4, pp. 89-99.
MA, X. y YU, J. The plasticizers containing amide groups for thermoplastic starch. Carbohydrate Polymers, 2004, vol. 57, núm. 2, pp. 197-203.
MAYA, J. y SABU, T. Biofibres and biocomposites. Carbohydrate Polymers, 2007, vol. 71, núm. 3, pp. 343-364.
MILLER, I. y FREUND, J. Probabilidad y estadística para ingenieros [libro en línea]. Barcelona: Reverté, 2004. <http://books.google.com.co> [Consulta: 13-08-2010].
MORRELAE, M. et ál. Effect of adding wood flour to the physical properties of a biodegradable polymer. Composites Part A, 2008, vol. 39, núm. 3, pp. 503-513.
NISHINO, T. et ál. Kenaf reinforced biodegradable composite. Composites Science and Technology, 2003, vol. 63, núm. 9, pp. 1281-1286.
OKSMAN, K.; SKRIFVARS, M. y SELIN, J.-F. Natural fibres as reinforcement in polylactic acid (PLA) composites. Composites Science and Technology, 2003, vol. 63, núm. 9, pp. 1317-1324.
OSSWALD, T. et ál. International plastics handbook the resource for engineers. Munich: Hanser Publishers, 2006.
PETNAMSIN, C.; TERMVEJSAYANON, N. y SRIROTH, K. Effect of particle size on physical properties and biodegradability of cassava starch / polymer blend. Kasetsart Journal: Natural Sciences, 2000, vol. 34, núm. 2, pp. 254-261.
PUSHPADASS, H. A. et al. Macromolecular changes in extruded starch-films plasticized with glycerol, water and stearic acid. Starch/Stärke, 2009, vol. 61, núm. 5, pp. 256-266.
ROMHÀNY, G.; KARGER-KOCSIS, J. y CZIGÀNY, T. Tensile fracture and failure behavior of thermoplastic starch with unidirectional and cross-ply flax fiber reinforcements. Macromolecular Materials and Engineering, 2003, vol. 288, núm. 9, pp. 699-707.
RUIZ, G. Obtención y caracterización de un polímero biodegradable a partir del almidón de yuca. Ingeniería y Ciencia, 2006, vol. 2, núm. 4, pp. 5-28.
SINHA, S. y BOUSMINA, M. Biodegradable polymers and their layered silicate nanocomposites: Ingreening the 21st century materials world. Progress in Materials Science, 2005, vol. 50, núm. 8, pp. 962-1079.
THARANATHAN, R. Biodegradable films and composite coatings. Past, present and future. Trends in Food Science and Technology, 2003, vol. 14, núm. 3, pp. 71-78.
THIRATHUMTHAVORN, D. y CHAROENREIN, S. Aging effects on sorbitol-and noncrystallizing sorbitol-plasticized tapioca starch films. Starch/Stärke, 2007, vol. 59, núm. 10, pp. 493-497.
VILLADA, H.; ACOSTA, H. y VELASCO, R. Biopolímeros naturales usados en empaques biodegradables. Temas Agrarios, 2007, vol. 12, núm. 2, pp. 5-13.
YU, J. et ál. Effect of glycerol on water vapor sorption and mechanical properties of starch/clay composite films. Starch/Stärke, 2008, vol. 60, núm. 5, pp. 257-262.

This journal is registered under a Creative Commons Attribution 4.0 International Public License. Thus, this work may be reproduced, distributed, and publicly shared in digital format, as long as the names of the authors and Pontificia Universidad Javeriana are acknowledged. Others are allowed to quote, adapt, transform, auto-archive, republish, and create based on this material, for any purpose (even commercial ones), provided the authorship is duly acknowledged, a link to the original work is provided, and it is specified if changes have been made. Pontificia Universidad Javeriana does not hold the rights of published works and the authors are solely responsible for the contents of their works; they keep the moral, intellectual, privacy, and publicity rights.

Approving the intervention of the work (review, copy-editing, translation, layout) and the following outreach, are granted through an use license and not through an assignment of rights. This means the journal and Pontificia Universidad Javeriana cannot be held responsible for any ethical malpractice by the authors. As a consequence of the protection granted by the use license, the journal is not required to publish recantations or modify information already published, unless the errata stems from the editorial management process. Publishing contents in this journal does not generate royalties for contributors.