Clasificación de lesión en rodilla usando señales de electromiografía superficial y goniometría empleando redes neuronales
http://revistas.javeriana.edu.co/index.php/iyu/issue/view/864
PDF (Inglés)

Archivos suplementarios

Imágenes del artículo

Palabras clave

Lesión de rodilla
EMGS
RNA
goniometría
transformada wavelet.

Cómo citar

Clasificación de lesión en rodilla usando señales de electromiografía superficial y goniometría empleando redes neuronales. (2015). Ingenieria Y Universidad, 19(1), 51-66. https://doi.org/10.11144/Javeriana.iyu19-1.kfsc
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar

Resumen

En este artículo se propone una metodología para soporte al diagnóstico en análisis de lesión de rodilla, teniendo en cuenta que dichas lesiones son comunes y se producen por diferentes causas, y donde su diagnóstico y tratamiento se realiza por medio de valoraciones por parte de un profesional en el área, que dependiendo de su criterio puede conllevar a  exámenes invasivos y/o de alto costo. El sistema emplea señales electromiográficas de superficie (EMGS) y señales de goniometría, analizadas con  métodos de análisis de señales en el espacio de tiempo-frecuencia mediante espectrograma y transformada wavelet. Como técnica de aprendizaje de máquina se emplean redes neuronales artificiales, por medio de un perceptrón multicapa. Las señales EMG fueron tomadas en cuatro músculos internos-externos asociados a la articulación, por medio de exámenes físicos de flexión y extensión, en el cual se registró además la goniometría en el plano sagital. Con este sistema se obtuvieron rendimientos superiores al 80% en la efectividad como medida de desempeño, convirtiéndose esta propuesta en una solución objetiva, que puede darle más elementos de juicio al profesional para el diagnóstico.

 

PDF (Inglés)

[1] M. Majewski, H. Susanne, and S. Klaus, “Epidemiology of athletic knee injuries: A 10-year study”, The Knee, vol.13, pp. 184-188, 2006.
[2] S. L. Woo et al., “Biomechanics of knee ligaments: injury, healing, and repair”, Journal Biomechanics, vol 39, pp. 1-20, 2006.
[3] F. Salinas Durán, et al., Rehabilitación en salud, 2da ed. Medellín: Universidad de Antioquia, 2008.
[4] R. D. P. Morales, D. A. Morales y V. H. Grisales, “Caracterización de señales electromiográficas para la discriminación de seis movimientos de la mano,” Scientia Et Technica, pp. 278-283, 2009.
[5] A. Fuglsang-Frederiksen, “The utility of interference pattern analysis,” Muscle nerve, pp. 18-36, 2000.
[6] J. L. Dideriksen et al., “Comparison between the degree of motor unit short-term synchronization and recurrence quantification analysis of the surface EMG in two human muscles”, Clinical neurophysiology, pp. 2086-2092, 2009.
[7] A. L. Bryant, R. U. Newton, and J. Steele, “Successful feed-forward strategies following ACL injury and reconstruction,” Journal Electromyography Kinesiology, pp. 988-997, 2009.
[8] M. C. Panesso, M. C. Trillos y I. T. Guzmán, Biomecánica clínica de la rodilla. Bogotá: Editorial Universidad del Rosario, 2009.
[9] A. Subasi, “Classification of EMG signals using combined features and soft computing techniques”, Applied soft computing, vol. 2012, no. 8, pp. 2188-2198, ago. 2012.
[10] L. Kok-Meng and J. Guo, “Kinematic and dynamic analysis of an anatomically based knee joint”, Journal Biomechanics, vol. 43, pp. 1231-1236, 2010.
[11] J. Romkes, C. Rudman, and R. Brunner, “Changes in gait and EMG when walking with the Masai Barefoot Technique”, Clinical Biomechanics, vol 21, pp. 75-81, 2006.
[12] V. C. Dionisio et al., “Kinematic, kinetic and EMG patterns during downward squatting”, Journal Electromyography Kinesiology, vol. 18, pp. 134-143, 2008.
[13] G. Rasool, K. Iqbal, and G. A. White, “Myoelectric activity detection during a Sit-to- Stand movement using threshold methods”, Computers Mathematics Applications, vol. 64, pp. 1473-1483, 2012.
[14] J. D. Enderle and J. D. Bronzino, Introduction to biomedical engineering. Burlington MA: Academic Press, 2011.
[15] J. D. Bronzino, The biomedical engineering handbook. Londres: CRC Press LLC, 2000.
[16] Y.C. Du et al., “Portable hand motion classifier for multi-channel surface electromyography recognition using grey relation analysis”, Expert Systems Applications, pp. 4283-4291, 2010.
[17] W. E. Prentice, Técnicas de rehabilitación en medicina deportiva. Badalona, España: Editorial Paidotribo, 2001.
[18] A. Phinyomark, “EMG feature evaluation for improving myoelectric pattern recognition robustness”, Expert Systems with Applications: An International Journal Archive, vol. 40, no. 12, pp. 4832-4840, sep. 2013.
[19] P. Konrad, Theabc of EMG. A practical introduction to kinesiological electromyography. Scottsdale: Noraxon, 2005.
[20] S. Thongpanja et al., “Mean and median frequency of EMG sign alto determine muscle force based on time-dependent power spectrum”, Electronics Electrical Engineering, vol 19, pp. 51-56, 2013.
[21] J. L. Rodríguez Sotelo et al., “Comparative study of techniques to features extraction in signals of electrocardiography”, Tesis de maestría, Universidad Nacional de Colombia, Manizales, 2004.
[22] D. G. Sánchez Marín y J. I. Marín Hurtado, “Segmentación y realce de señales de voz usando la transformada Wavelet y DSPs”, Tesis, Universidad del Quindío, Armenia, Colombia, 2004.
[23] A. Subasi, “Classification of EMG signals using PSO optimized SVM for diagnosis of neuromuscular disorders”, Computers Biology Medicine, vol. 43, pp. 576-586, 2013.
[24] T. M. Apóstol, Análisis matemático. Barcelona: Editorial Reverté, 1976.
[25] A. F. Quiceno Manrique et al., “Análisis tiempo-frecuencia por métodos no paramétricos orientado a la detección de patologías en bioseñales”, Tesis de maestría, Universidad Nacional de Colombia, Bogotá, 2009.
[26] M. M. Ardestani, “Human lower extremity joint moment prediction: A wavelet neural network approach”, Expert Systems Applications, vol. 41, pp. 4422-4433, jul. 2014.
[27] M. Rojas-Martínez et al., “Identification of isometric contractions based on high density EMG maps”, Journal Electromyography Kinesiology, vol. 23 pp. 33-42, 2013.
[28] M. Bienfait, Bases fisiológicas de la terapia manual y de la osteopatía. Barcelona: Paidotribo, 2006.
[29] V. Ruonala et al., “EMG signal morphology and kinematic parameters in essential tremor and Parkinson’s disease patients”, Journal Electromyography Kinesiology, vol. 24, pp. 300-306, 2014.
[30] J. L. Rodríguez Sotelo et al., “Unsupervised feature relevance analysis applied to improve ECG heartbeat clustering”, Computer Methods Programs Biomedicine, pp. 250-261, 2012.

Una vez aceptado un trabajo para publicación la revista podrá disponer de él en toda su extensión, tanto directamente como a través de intermediarios, ya sea de forma impresa o electrónica, para su publicación ya sea en medio impreso o en medio electrónico, en formatos electrónicos de almacenamiento, en sitios de la Internet propios o de cualquier otro editor. Este uso tiene como fin divulgar el trabajo en la comunidad científica y académica nacional e internacional y no persigue fines de lucro. Para ello el autor o los autores le otorgan el permiso correspondiente a la revista para dicha divulgación mediante autorización escrita.

Todos los articulos aceptados para publicación son sometidos a corrección de estilo. Por tanto el autor /los autores autorizan desde ya los cambios sufridos por el artículo en la corrección de estilo.

El autor o los autores conservarán los derechos morales y patrimoniales del artículo.