Resumen
En este artículo se propone una metodología para soporte al diagnóstico en análisis de lesión de rodilla, teniendo en cuenta que dichas lesiones son comunes y se producen por diferentes causas, y donde su diagnóstico y tratamiento se realiza por medio de valoraciones por parte de un profesional en el área, que dependiendo de su criterio puede conllevar a exámenes invasivos y/o de alto costo. El sistema emplea señales electromiográficas de superficie (EMGS) y señales de goniometría, analizadas con métodos de análisis de señales en el espacio de tiempo-frecuencia mediante espectrograma y transformada wavelet. Como técnica de aprendizaje de máquina se emplean redes neuronales artificiales, por medio de un perceptrón multicapa. Las señales EMG fueron tomadas en cuatro músculos internos-externos asociados a la articulación, por medio de exámenes físicos de flexión y extensión, en el cual se registró además la goniometría en el plano sagital. Con este sistema se obtuvieron rendimientos superiores al 80% en la efectividad como medida de desempeño, convirtiéndose esta propuesta en una solución objetiva, que puede darle más elementos de juicio al profesional para el diagnóstico.
[2] S. L. Woo et al., “Biomechanics of knee ligaments: injury, healing, and repair”, Journal Biomechanics, vol 39, pp. 1-20, 2006.
[3] F. Salinas Durán, et al., Rehabilitación en salud, 2da ed. Medellín: Universidad de Antioquia, 2008.
[4] R. D. P. Morales, D. A. Morales y V. H. Grisales, “Caracterización de señales electromiográficas para la discriminación de seis movimientos de la mano,” Scientia Et Technica, pp. 278-283, 2009.
[5] A. Fuglsang-Frederiksen, “The utility of interference pattern analysis,” Muscle nerve, pp. 18-36, 2000.
[6] J. L. Dideriksen et al., “Comparison between the degree of motor unit short-term synchronization and recurrence quantification analysis of the surface EMG in two human muscles”, Clinical neurophysiology, pp. 2086-2092, 2009.
[7] A. L. Bryant, R. U. Newton, and J. Steele, “Successful feed-forward strategies following ACL injury and reconstruction,” Journal Electromyography Kinesiology, pp. 988-997, 2009.
[8] M. C. Panesso, M. C. Trillos y I. T. Guzmán, Biomecánica clínica de la rodilla. Bogotá: Editorial Universidad del Rosario, 2009.
[9] A. Subasi, “Classification of EMG signals using combined features and soft computing techniques”, Applied soft computing, vol. 2012, no. 8, pp. 2188-2198, ago. 2012.
[10] L. Kok-Meng and J. Guo, “Kinematic and dynamic analysis of an anatomically based knee joint”, Journal Biomechanics, vol. 43, pp. 1231-1236, 2010.
[11] J. Romkes, C. Rudman, and R. Brunner, “Changes in gait and EMG when walking with the Masai Barefoot Technique”, Clinical Biomechanics, vol 21, pp. 75-81, 2006.
[12] V. C. Dionisio et al., “Kinematic, kinetic and EMG patterns during downward squatting”, Journal Electromyography Kinesiology, vol. 18, pp. 134-143, 2008.
[13] G. Rasool, K. Iqbal, and G. A. White, “Myoelectric activity detection during a Sit-to- Stand movement using threshold methods”, Computers Mathematics Applications, vol. 64, pp. 1473-1483, 2012.
[14] J. D. Enderle and J. D. Bronzino, Introduction to biomedical engineering. Burlington MA: Academic Press, 2011.
[15] J. D. Bronzino, The biomedical engineering handbook. Londres: CRC Press LLC, 2000.
[16] Y.C. Du et al., “Portable hand motion classifier for multi-channel surface electromyography recognition using grey relation analysis”, Expert Systems Applications, pp. 4283-4291, 2010.
[17] W. E. Prentice, Técnicas de rehabilitación en medicina deportiva. Badalona, España: Editorial Paidotribo, 2001.
[18] A. Phinyomark, “EMG feature evaluation for improving myoelectric pattern recognition robustness”, Expert Systems with Applications: An International Journal Archive, vol. 40, no. 12, pp. 4832-4840, sep. 2013.
[19] P. Konrad, Theabc of EMG. A practical introduction to kinesiological electromyography. Scottsdale: Noraxon, 2005.
[20] S. Thongpanja et al., “Mean and median frequency of EMG sign alto determine muscle force based on time-dependent power spectrum”, Electronics Electrical Engineering, vol 19, pp. 51-56, 2013.
[21] J. L. Rodríguez Sotelo et al., “Comparative study of techniques to features extraction in signals of electrocardiography”, Tesis de maestría, Universidad Nacional de Colombia, Manizales, 2004.
[22] D. G. Sánchez Marín y J. I. Marín Hurtado, “Segmentación y realce de señales de voz usando la transformada Wavelet y DSPs”, Tesis, Universidad del Quindío, Armenia, Colombia, 2004.
[23] A. Subasi, “Classification of EMG signals using PSO optimized SVM for diagnosis of neuromuscular disorders”, Computers Biology Medicine, vol. 43, pp. 576-586, 2013.
[24] T. M. Apóstol, Análisis matemático. Barcelona: Editorial Reverté, 1976.
[25] A. F. Quiceno Manrique et al., “Análisis tiempo-frecuencia por métodos no paramétricos orientado a la detección de patologías en bioseñales”, Tesis de maestría, Universidad Nacional de Colombia, Bogotá, 2009.
[26] M. M. Ardestani, “Human lower extremity joint moment prediction: A wavelet neural network approach”, Expert Systems Applications, vol. 41, pp. 4422-4433, jul. 2014.
[27] M. Rojas-Martínez et al., “Identification of isometric contractions based on high density EMG maps”, Journal Electromyography Kinesiology, vol. 23 pp. 33-42, 2013.
[28] M. Bienfait, Bases fisiológicas de la terapia manual y de la osteopatía. Barcelona: Paidotribo, 2006.
[29] V. Ruonala et al., “EMG signal morphology and kinematic parameters in essential tremor and Parkinson’s disease patients”, Journal Electromyography Kinesiology, vol. 24, pp. 300-306, 2014.
[30] J. L. Rodríguez Sotelo et al., “Unsupervised feature relevance analysis applied to improve ECG heartbeat clustering”, Computer Methods Programs Biomedicine, pp. 250-261, 2012.
Una vez aceptado un trabajo para publicación la revista podrá disponer de él en toda su extensión, tanto directamente como a través de intermediarios, ya sea de forma impresa o electrónica, para su publicación ya sea en medio impreso o en medio electrónico, en formatos electrónicos de almacenamiento, en sitios de la Internet propios o de cualquier otro editor. Este uso tiene como fin divulgar el trabajo en la comunidad científica y académica nacional e internacional y no persigue fines de lucro. Para ello el autor o los autores le otorgan el permiso correspondiente a la revista para dicha divulgación mediante autorización escrita.
Todos los articulos aceptados para publicación son sometidos a corrección de estilo. Por tanto el autor /los autores autorizan desde ya los cambios sufridos por el artículo en la corrección de estilo.
El autor o los autores conservarán los derechos morales y patrimoniales del artículo.