Resumen
Objetivo: La meta de este artículo es la de presentar un sistema (hardware y software) enfocado en la capacitación al explorar e interactuar con modelos realistas en mundos virtuales a través del uso de juegos serios. Métodos: Se proponen dos aplicaciones. La primera aplicación utiliza archivos realistas de modelado de información de construcción (BIM) para desarrollar simulaciones y se centra en la capacitación de seguridad operacional de máquinas en instalaciones de ingeniería y laboratorios. El segundo es una herramienta que ayuda a generar habilidades para interpretar imágenes médicas (MI). Ambos juegos de virtualización crean modelos interactivos que se pueden explorar utilizando un juego serio en primera persona y con vista en una CAVE de entorno virtual automático. Resultados: se realizó un estudio perceptivo pidiendo a los grupos focales que evaluaran sus experiencias con los juegos serios. Según la percepción de los usuarios, un juego inmersivo serio para el entrenamiento es una actividad entretenida e interesante, considerando que la experiencia del entorno virtual es bastante realista. En general, un juego serio que se muestra en un entorno de realidad virtual (VR) puede ser una herramienta eficaz para el aprendizaje. Conclusiones: aunque este tipo de sistemas de VR puede considerarse novedoso para la formación profesional, deben actualizarse constantemente para mantener a los estudiantes involucrados y enfocados en el proceso de aprendizaje.
A. de Gloria, F. Bellotti, and R. Berta, “Serious Games for education and training,” Int. J. Serious Games, vol. 1. no. 1, 2014. Available: https://doi.org/10.17083/ijsg.v1i1.11
W. Westera, R. J. Nadolski, H. G. K. Hummel, and I. G. J. H. Wopereis, “Serious games for higher education: A framework for reducing design complexity,” J. Comput. Assist. Learn., vol. 24, no. 5, pp. 420–432, 2008. Available: https://doi.org/10.1111/j.1365-2729.2008.00279.x
A. Yusoff, R. Crowder, L. Gilbert, and G. Wills, “A conceptual framework for serious games,” in Proc. 2009 9th IEEE Int. Conf. Adv. Learn Technol., ICALT 2009, pp. 21–23. doi: 10.1109/ICALT.2009.19
D. J. van der Zee, B. Holkenborg, and S. Robinson, “Conceptual modeling for simulation-based serious gaming,” Decis. Support Syst., vol. 54, no. 1, 2012. Available: https://dl.acm.org/doi/10.1016/j.dss.2012.03.006
I. Marfisi-Schottman, S. George, and T.-B. Frank, “Tools and Methods fo Efficiently Designing Serious Games,” in 4th Eur. Conf. Games Based Learn., ECGBL2010, pp. 226–234.
B. Capdevila-Ibáñez, B. Marne, and J. M. Labat, “Conceptual and technical frameworks for serious games,” in Proc. Eur. Conf. Games-based Learn., pp. 81–87, 2011. Available: https://hal.archives-ouvertes.fr/hal-01282512
C. E. Catalano, A. M. Luccini, and M. Mortara, “Guidelines for an effective design of serious games,” Int. J. Serious Games, vol. 1, no. 1, pp. 1–14, 2014. Available: https://doi.org/10.17083/ijsg.v1i1.8
D. Drummond, A. Hadchouel, and A. Tesnière, “Serious games for health: three steps forwards,” Adv. Simul., vol. 2, no. 1, p. 3, Feb. 2017. Available: https://doi.org/10.1186/s41077-017-0036-3
M. B. Carvalho, Serious Games for Learning: A model and a Reference Architecture for Efficient Game Development. Eindhoven: Technische Universiteit Eindhoven, 2017. Available: https://pure.tue.nl/ws/files/53721834/20170201_Brandao_Carvalho.pdf
R. Dörner, S. Göbel, W. Effelsberg, and J. Wiemeyer, “Introduction,” in Serious Games, R. Dörner, S. Göbel, W. Effelsberg, and J. Wiemeyer, Eds. Cham: Springer International Publishing, 2016, pp. 1–34. Available: https://www.springer.com/gp/book/9783319406114
J. Gregory, “Game engine architecture,” in Choice Rev. Online, vol. 47, no. 05, pp. 47-2616, 2013. https://www.latexstudio.net/wp-content/uploads/2014/12/Game_Engine_Architecture-en.pdf
M. McShaffry and D. Graham, Game Coding Complete, 4th ed. Boston, MA: Course Technology, 2009.
E. Christopoulou and S. Xinogalos, “Overview and comparative analysis of game engines for desktop and mobile devices,” Int. J. Serious Games, vol. 4, no. 4, 2017. Available: https://doi.org/10.17083/ijsg.v4i4.194
C. Barreto, A. Cardoso, E. Lamounier, A. Carvalho, and L. Mattioli, “Strategy to optimize the creation of arrangements in virtual electric power substations,” in 2017 43rd Lat. Am. Comput. Conf., CLEI 2017, pp. 1–8.
A. Cardoso, I. C. do Santos-Peres, E. Lamounier, G. Lima, M. Miranda, and I. Moraes, “Associating holography techniques with BIM practices for electrical substation design,” in Adv. Intell. Syst. Comput., vol. 599, pp. 37–47, 2018. Available https://doi.org/10.1007/978-3-319-60204-2_5
A. Heydarian, J. P. Carneiro, D. Gerber, B. Becerik-Gerber, T. Hayes, and W. Wood, “Immersive virtual environments versus physical built environments: A benchmarking study for building design and user-built environment explorations,” Autom. Constr., vol. 54, pp. 116–126, 2015. Available: https://doi.org/10.1016/j.autcon.2015.03.020
T. Hilfert, J. Teizer, and M. König, “First person virtual reality for evaluation and learning of construction site safety,” in ISARC 2016, 33rd Int. Symp. Autom. Robotic. Constr., pp. 200–208. https://pdfs.semanticscholar.org/8b64/275b8e26849fb84b727fc80779532fd25ad8.pdf
S. Kumar, M. Hedrick, C. Wiacek, and J. I. Messner, “Developing an experienced-based design review application for healthcare facilities using a 3D game engine,” Electron. J. Inf. Technol. Constr., vol. 16, pp. 84–103, 2011. Available: https://itcon.org/papers/2011_6.content.09997.pdf
U. Rüppel and K. Schatz, “Designing a BIM-based serious game for fire safety evacuation simulations,” Adv. Eng. Inform., 2011. Available: https://doi.org/10.1016/j.aei.2011.08.001
W. Yan, C. Culp, and R. Graf, “Integrating BIM and gaming for real-time interactive architectural visualization,” Autom. Constr., vol. 20, no. 4, pp. 446–458, 2011.
D. Wortley, “The Future of Serious Games and Immersive Technologies and Their Impact on Society,” in Trends and Applications of Serious Gaming and Social Media, Y. Baek, R. Ko, and T. Marsh, Eds. Singapore: Springer Singapore, 2014, pp. 1–14. https://link.springer.com/book/10.1007/978-981-4560-26-9
L. Freina and M. Ott, “A literature review on immersive virtual reality in education: State of the art and perspectives,” in Proc. eLearn. Softw. Edu. (eLSE), no. July, 2015, p. 8. Available: https://www.semanticscholar.org/paper/A-LITERATURE-REVIEW-ON-IMMERSIVE-VIRTUAL-REALITY-IN-Ott-Freina/e93b38f3892c7357051f39be6b6574f298a3b72a
R. Earnshaw, M. Gigante, and H. Jones, “Introduction,” in Virtual Reality Systems, R. A. Earnshaw, M. A. Gigante, and H. Jones, Eds. Boston: Academic Press, 2014, pp. XIX–XXII. Available: https://www.elsevier.com/books/virtual-reality-systems/earnshaw/978-0-12-227748-1
Y. Liu, G. Tanudjaja, Z. Jiang, and N. Beck, Workflow of Exporting Revit Models to Unity. State College: Pennsylvania, 2016.
L. Z. Eng, Building a Game with Unity and Blender. Birmingham, UK: Packt Publishing, 2015.
Centro de Tecnologia da Informação Renato Archer, “InVesalius 3: Open source software for reconstruction of computed tomography and magnetic ressonance images,” 2017. [Online]. Available: https://www.cti.gov.br/en/invesalius
E. A. Suma, D. M. Krum, B. Lange, S. Koenig, A. Rizzo, and M. Bolas, “Special Section on Touching the 3rd Dimension: Adapting user interfaces for gestural interaction with the flexible action and articulated skeleton toolkit,” Comput. Graph., vol. 37, no. 3, pp. 193–201, 2013.
Sensics, “Virtual-Reality Peripheral Network,” May-2017. [Online]. Available: https://github.com/vrpn/vrpn/wiki
E. W. Weisstein and C. Problem, “From MathWorld: A Wolfram Web Resource,” LeastSquaresFittingExponential. html. Accessed on: June 24, 2016.
K.-Y. Lo, C.-W. Fu, and H. Li, “3D polyomino puzzle,” in ACM T. Graph., vol. 28, no. 5, 2009, p. 1. Available: https://doi.org/10.1145/1661412.1618503
R. Tredinnick, B. Boettcher, S. Smith, S. Solovy, and K. Ponto, “Uni-CAVE: A Unity3D plugin for non-head mounted VR display systems,” in Proc. IEEE Virtual Reality, 2017, pp. 393–394. Available: https://doi.org/10.1109/VR.2017.7892342
M. Tawadrous, D. Rojas, B. Kapralos, A. Hogue, and A. Dubrowski, “The effects of stereoscopic 3D on knowledge retention within a serious gaming environment,” Multimed. Tools Appl., vol. 76, no. 5, pp. 7301–7319, Mar. 2017. Available: https://doi.org/10.1007/s11042-016-3394-2
W. van der Vegt, W. Westera, E. Nyamsuren, A. Georgiev, and I. M. Ortiz, “RAGE architecture for reusable serious gaming technology components,” Int. J. Comput. Games Technol., 2016. Available: https://doi.org/10.1155/2016/5680526
A. Bangor, P. T. Kortum, and J. T. Miller, “An empirical evaluation of the system usability scale,” Int. J. Hum. Comput. Interact., Jul. 2008. Available: https://doi.org/10.1080/10447310802205776
J. H. Brockmyer, C. M. Fox, K. A. Curtiss, E. McBroom, K. M. Burkhart, and J. N. Pidruzny, “The development of the Game Engagement Questionnaire: A measure of engagement in video game-playing,” J. Exp. Soc. Psychol., vol. 45. no. 4, 2009. Available: https://doi.org/10.1016/j.jesp.2009.02.016
Z. Mihajlovic, S. Popovic, K. Brkic, and K. Cosic, “A system for head-neck rehabilitation exercises based on serious gaming and virtual reality,” Multimed. Tools Appl., vol. 77, pp. 19113–19137, 2018. Available: https://doi.org/10.1007/s11042-017-5328-z

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Derechos de autor 2021 Iván Fernando Mondragón-Bernal, PhD