Resumen
Este trabajo tuvo por objetivo evaluar la reutilización de aguas residuales municipales tratadas por humedales construidos subsuperficiales (HC-SSs), como agua de riego, en el cultivo aeropónico de flores de corte en condiciones áridas. Para esto, se instalaron dos unidades experimentales de cultivo aeropónicas plantadas con la flor de corte Lilium ‘Tresor’ e irrigadas con agua tratada por HC-SSs. Los resultados mostraron que la calidad del agua efluente a los HC-SSs debe ser mejorada para ser reutilizada en riego. Pese a esto, el Lilium ‘Tresor’ se desarrolló en condiciones áridas, con diámetros de tallo y cantidad de flores normales, pero por tener alturas bajo 0.65 m, su comercialización estaría limitada a mercados nacionales. La conductividad eléctrica en el agua (> 2300 µs/cm) y la luminosidad (> 120 klux) fueron los factores que afectaron la altura. El cultivo aeropónico utilizó solo entre 10 y 20 % del agua para producir Lilium ‘Tresor’ comparado con otros sistemas de cultivo. Así, este trabajo mostró la factibilidad de producir flores de corte en un sistema de cultivo aeropónico en condiciones áridas y regadas con efluentes de HC-SSs, detectando que para su escalamiento industrial se deben hacer mejoras en la calidad del agua y la luminosidad.
[2] L. Cáceres, J. Delatorre, F. de la Riva, and V. Monardes, “Greening of arid cities by residual water reuse: A multidisciplinary project in northern Chile,” Ambio, vol. 32, no. 4, pp. 264–268, Jun. 2003. doi: 10.1639/0044-7447(2003)032[0264:GOACBR]2.0.CO;2
[3] C.-A. Villamar, I. Vera-Puerto, D. Rivera, and F. de la Hoz, “Reuse and recycling of livestock and municipal wastewater in Chilean agriculture: A preliminary assessment,” Water, vol. 10, no. 6, p. 817, Jun. 2018. doi.org/10.3390/w10060817
[4] I. Vera, C. Jorquera, D. López, and G. Vidal, “Humedales construidos para tratamiento y reúso de aguas servidas en Chile : reflexiones,” Tecnol. Cienc. Agua, vol. 7, no. 3, pp. 19–35, May./Jun. 2016. Available: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-24222016000300019
[5] I. Vera-Puerto, J. Olave, S. Tapia, and W. Chávez, “Atacama Desert: Water resources and reuse of municipal wastewater in irrigation of cut flower aeroponic cultivation system (first laboratory experiments),” Desalin. Water Treat., vol. 150, pp. 73–83, May 2019. doi: 10.5004/dwt.2019.23612
[6] B. Jiménez, “Irrigation in developing countries using wastewater,” Int. Rev. Environ. Strateg., vol. 6, no. 2, pp. 229–250, Mar. 2006. Available: https://www.iges.or.jp/en/publication_documents/pub/peer/en/1199/IRES_Vol.6-2_229.pdf
[7] Y. Tapia et al., “Atriplex atacamensis and Atriplex halimus resist as contamination in Pre-Andean soils (northern Chile),” Sci. Total Environ., vol. 450-451, pp. 188–196, Apr. 2013. doi: 10.1016/j.scitotenv.2013.02.021
[8] A. Noyola, A. Padilla-Rivera, J. M. Morgan-Sagastume, L. P. Güereca, and F. Hernández-Padilla, “Typology of municipal wastewater treatment technologies in Latin America,” CLEAN Soil, Air, Water, vol. 40, no. 9, pp. 926–932, Sep. 2012. doi: 10.1002/clen.201100707
[9] D. Zhang, K. Jinadasa, R. Gersberg, Y. Liu, W. Ng, and S. Tan, “Application of constructed wetlands for wastewater treatment in developing countries: A review of recent developments (2000-2013),” J. Environ. Manage., vol. 141, pp. 116–131, Aug. 2014. Available: https://doi.org/10.1016/j.jenvman.2014.03.015
[10] A. Albalawneh, T.-K. Chang, C.-S. Chou, and S. Naoum, “Efficiency of a horizontal sub-surface flow constructed wetland treatment system in an arid area,” Water, vol. 8, no. 2, pp. 1–14, Feb. 2016. doi: 10.3390/w8020051
[11] A. Gross, O. Shmueli, Z. Ronen, and E. Raveh, “Recycled vertical flow constructed wetland (RVFCW): A novel method of recycling greywater for irrigation in small communities and households,” Chemosphere, vol. 66, pp. 916–923, Jan. 2007. doi: 10.1016/j.chemosphere.2006.06.006
[12] K. Andersson et al., “Sanitation, wastewater management and sustainability: From waste disposal to resource recovery,” UN Environment Programme and Stockholm Environment Institute, Nairobi, Kenya, 2016. [Online]. Available: https://www.sei.org/publications/sanitation-wastewater-and-sustainability/
[13] F. Masi, A. Rizzo, and M. Regelsberger, “The role of constructed wetlands in a new circular economy, resource oriented, and ecosystem services paradigm,” J. Environ. Manage., vol. 216, pp. 275–284, Jun. 2018. doi: 10.1016/j.jenvman.2017.11.086
[14] V. Burgos, F. Araya, C. Reyes-Contreras, I. Vera, and G. Vidal, “Performance of ornamental plants in mesocosm subsurface constructed wetlands under different organic sewage loading,” Ecol. Eng., vol. 99, pp. 246–255, Feb. 2017. doi: 10.1016/j.ecoleng.2016.11.058
[15] L. Sandoval-Herazo, A. Alvarado-Lassman, J. Marín-Muñiz, J. Méndez-Contreras, and S. Zamora-Castro, “Effects of the use of ornamental plants and different substrates in the removal of wastewater pollutants through microcosms of constructed wetlands,” Sustainability, vol. 10, no. 5, pp. 1594, May 2018. doi: 10.3390/su10051594
[16] S. Zamora-Castro, J. Marín-Muñiz, L. Sandoval, M. Vidal-Álvarez, and J. Carrión-Delgado, “Effect of ornamental plants, seasonality, and filter media material in fill-and-drain constructed wetlands treating rural community wastewater,” Sustainability, vol. 11, no. 8, pp. 2350, Apr. 2019. doi: 10.3390/su11082350
[17] L. Sandoval, S. Zamora-Castro, M. Vidal-Álvarez, and J. Marín-Muñiz, “Role of wetland plants and use of ornamental flowering plants in constructed wetlands for wastewater treatment: A review,” Appl. Sci., vol. 9, no. 4, pp. 685, Feb. 2019. doi: 10.3390/app9040685
[18] J. Travis, N. Weisbrod, and A. Gross, “Decentralized wetland-based treatment of oil-rich farm wastewater for reuse in an arid environment,” Ecol. Eng., vol. 39, pp. 81–89, Feb. 2012. doi: 10.1016/j.ecoleng.2011.11.008
[19] S. Abou-Elela, G. Golinelli, A. Saad El-Tabl, and M. Hellal, “Treatment of municipal wastewater using horizontal flow constructed wetlands in Egypt,” Water Sci. Technol., vol. 69, no. 1, pp. 38-47, Jan. 2014. doi: 10.2166/wst.2013.530
[20] L. Latrach, N. Ouazzani, A. Hejjaj, M. Mahi, T. Masunaga, and L. Mandi, “Two-stage vertical flow multi-soil-layering (MSL) technology for efficient removal of coliforms and human pathogens from domestic wastewater in rural areas under arid climate,” Int. J. Hyg. Environ. Health, vol. 221, no. 1, pp. 64–80, Jan. 2018. doi: 10.1016/j.ijheh.2017.10.004
[21] M. Safi, A. Bulad, A. Blawenah, and I. Bashabsheh, “Water use efficiency, flower yield and quality of ‘Lilium aziatische’ irrigated with different water types,” Int. J. Agric. Biol., vol. 9, no. 2, pp. 264–266, Jul. 2007. Available: http://www.fspublishers.org/published_papers/44488_..pdf
[22] A. Alderfasi, “Agronomic and economic benefits of reuse secondary treated wastewater in irrigation under arid and semi-arid region,” World J. Agric. Sci., vol. 5, no. 3, pp. 369–374, Jan. 2009. Available: https://www.researchgate.net/publication/237501488_Agronomic_and_Economic_Impacts_of_Reuse_Secondary_Treated_Wastewater_in_Irrigation_under_Arid_and_Semi-Arid_Regions
[23] J. Olave, B. Torres, W. Chávez, and O. González, Producción de Lilium bajo invernadero en un sistema aeropónico recirculante con agua residual urbana tratada en el desierto de Atacama. Iquique: Universidad Arturo Prat, Fundación para la Innovación Agraria (FIA), 2016.
[24] C. Cassaniti, D. Romano, and T. Flowers, “The response of ornamental plants to saline irrigation water,” in Irrigation: Water Management, Pollution and Alternative Strategies, I. García-Garizabal, Ed. Rijeka: IntechOpen, 2012, pp. 131–158.
[25] K. Al-Ghawanmeh, N. Bani Hani, A. Al-Hammouri, and N. Karam, “Effect of irrigation with nutrient solutions mixed with treated wastewater on Asiatic lily ‘Brunello’ grown in a closed soilless culture,” Acta Agric. Slov., vol. 109, no. 1, pp. 29–42, Jan. 2017. doi: 10.14720/aas.2017.109.1.03
[26] I. Vera, N. Verdejo, W. Chávez, C. Jorquera, and J. Olave, “Influence of hydraulic retention time and plant species on performance of mesocosm subsurface constructed wetlands during municipal wastewater treatment in super-arid areas,” J. Environ. Sci. Heal. Part A, vol. 51, no. 2, pp. 105–113, Jan. 2016. doi: 10.1080/10934529.2015.1087732
[27] Dirección Meteorológica de Chile, “Productos climatológicos actuales e históricos: Estación Diego Aracena,” 2014. [Online]. Available: https://climatologia.meteochile.gob.cl/application/informacion/fichaDeEstacion/200006#inventario
[28] American Public Health Association, American Water Works Association, and Water Environment Federation, Standard Methods for the Examination of Water and Wastewater, 20th Ed. Washington: APHA American Public Health Association, 1998.
[29] NCh 2313/23 of. 95 Aguas Residuales Métodos de Análisis Parte 23: Determinación de Coliformes Fecales en medio A-1, 1995.
[30] J. di Rienzo, F. Casanoves, M. Balzarini, L. Gonzalez, M. Tablada, and C. Robledo, “InfoStat Versión 2018,” Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina, 2018. Available: http://www.infostat.com.ar
[31] S. Lavrnić, M. Zapater-Pereyra, and M. L. Mancini, “Water scarcity and wastewater reuse standards in Southern Europe: Focus on agriculture,” Water, Air, Soil Pollut., vol. 228, no. 7, pp. 2–12, Jul. 2017. doi: 10.1007/s11270-017-3425-2
[32] Y. Tencer, G. Idan, M. Strom, and U. Nusinow, “Establishment of a constructed wetland in extreme dryland,” Environ. Sci. Pollut. Res., vol. 16, no. 7, pp. 862–875, Nov. 2009. doi: 10.1007/s11356-009-0232-3
[33] G. Verdugo et al., Producción de flores cortadas: V Región. Santiago, Chile: Fundacción para la Innovación Agraria (FIA), Instituto de Investigaciones Agropecuarias (INIA), 2007. [Online]. Available: http://bibliotecadigital.fia.cl/bitstream/handle/20.500.11944/1851/3FloresVReg.pdf?sequence=1&isAllowed=y
[34] D. Norton-Brandão, S. Scherrenberg, and J. van Lier, “Reclamation of used urban waters for irrigation purposes: A review of treatment technologies,” J. Environ. Manage., vol. 122, pp. 85–98, Jun. 2013. doi: 10.1016/j.jenvman.2013.03.012
[35] Centro Internacional de Bulbos de Flor (CIBF), El cultivo del lilium: flor cortada y cultivo en maceta. Hillegom: Centro Internacional de Bulbos de Flor, 1980.
[36] B.-C. In and J. H. Lim, “Potential vase life of cut roses: Seasonal variation and relationships with growth conditions, phenotypes, and gene expressions,” Postharvest Biol. Technol., vol. 135, pp. 93–103, Jan. 2018. doi: 10.1016/j.postharvbio.2017.09.006
[37] O. Auzaque-Rodríguez, H. Balaguera-López, J. Álvarez-Herrera, and G. Fischer, “Efecto de la vernalización de bulbos reutilizados sobre la calidad de la flor de lirio (Lilium sp.) en la Sabana de Bogotá,” Agron. Colomb., vol. 27, no. 1, pp. 65–71, Jan. 2009. Available: https://www.researchgate.net/publication/256473694_Efecto_de_la_vernalizacion_de_bulbos_reutilizados_sobre_la_calidad_de_la_flor_de_lirio_Lilium_sp_en_la_Sabana_de_Bogota
[38] F. Schiappacasse, G. Carrasco, and F. Carrasco, “Effect of four shading levels on flower stem and bulb quality of two lilies (Lilium spp.) cultivars (In Spanish),” Agric. Técnica, vol. 66, no. 4, pp. 352–359, Oct. 2006. Available: http://dx.doi.org/10.4067/S0365-28072006000400003
[39] C. Treftz and S. Omaye, “Hydroponics: Potential for augmenting sustainable food production in non-arable regions,” Nutr. Food Sci., vol. 46, no. 5, pp. 672–684, Sep. 2016. doi: 10.1108/NFS-10-2015-0118

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Derechos de autor 2020 Ismael Leonardo Vera-Puerto, Jorge Leonardo Olave-Vera, Sussy Tapia, Wladimir Antonio Chávez, Carlos Arias