Optimización basada en simulación para el problema de inventario administrado por el proveedor en plaquetas sanguíneas
HTML Full Text (Inglés)
PDF (Inglés)
XML (Inglés)

Palabras clave

Optimización basada en simulación
cadena de suministro de sangre
inventario de plaquetas
inventarios manejados por el proveedor
algoritmos genéticos

Cómo citar

Optimización basada en simulación para el problema de inventario administrado por el proveedor en plaquetas sanguíneas . (2022). Ingenieria Y Universidad, 26. https://doi.org/10.11144/javeriana.iued26.sboa
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar

Resumen

Objetivo: Estimar una política óptima para el problema de distribución de la cadena de suministro de plaquetas sanguíneas usando una metodología basada en el problema de inventario administrado por proveedor. Métodos y materiales: Este articulo usa un modelo de optimización integrado basado en simulación para desarrollar una metodología basada en el problema de inventario administrado por proveedor para las plaquetas sanguíneas. La simulación se utiliza para estimar el desempeño de una política de inventario determinada. Por otro lado, se utilizan algoritmos genéticos para encontrar una política de inventario optima o cercana al óptimo. Esta metodología conjunta se evalúa utilizando un caso de estudio real inspirado en un banco de sangre en Colombia. Resultados y discusión: Usando la metodología propuesta, indicadores claves de desempeño de la cadena de suministro de sangre tales como el costo total y el número de unidades vencidas mejoran considerablemente al mismo tiempo que se mantiene el mismo nivel de servicio. En términos de costos, el modelo VMI muestra una mejora del 19.19% sobre la solución no VMI inicial. Además, la solución VMI propuesta es capaz de reducción el número de plaquetas expiradas en un 42.25 %. Conclusiones: El uso de un sistema de distribución basado en VMI junto con una estrategia de optimización basada en simulación con algoritmos genéticos ofrece resultados prometedores en el caso de estudio propuesto. Esta metodología mixta permite configuraciones flexibles del sistema sin necesidad de realizar cambios complejos al algoritmo, y lo logra sin utilizar recursos computacionales excesivos.

 

HTML Full Text (Inglés)
PDF (Inglés)
XML (Inglés)

J. Beliën and H. Forcé, “Supply chain management of blood products: A literature review,” Eur. J. Oper. Res., vol. 217, no. 1, pp. 1–16, 2012, . https://doi.org/10.1016/j.ejor.2011.05.026

A. F. Osorio, S. C. Brailsford, and H. K. Smith, “A structured review of quantitative models in the blood supply chain: a taxonomic framework for decision-making,” International Journal of Production Research. Taylor & Francis, pp. 1–22, 2015, . https://doi.org/10.1080/00207543.2015.1005766

A. Pirabán, W. J. Guerrero, and N. Labadie, “Survey on blood supply chain management: Models and methods,” Comput. Oper. Res., vol. 112, p. 104756, 2019, https://doi.org/10.1016/j.cor.2019.07.014

G. Figueira and B. Almada-Lobo, “Hybrid simulation–optimization methods: A taxonomy and discussion,” Simul. Model. Pract. Theory, vol. 46, pp. 118–134, Aug. 2014, http://dx.doi.org/10.1016/j.simpat.2014.03.007

A.-T. Nguyen, S. Reiter, and P. Rigo, “A review on simulation-based optimization methods applied to building performance analysis,” Appl. Energy, vol. 113, pp. 1043–1058, 2014, https://doi.org/10.1016/j.apenergy.2013.08.061

M. Gansterer, C. Almeder, and R. F. Hartl, “Simulation-based optimization methods for setting production planning parameters,” Int. J. Prod. Econ., vol. 151, pp. 206–213, 2014, https://doi.org/10.1016/j.ijpe.2013.10.016

T. Roh, T. Lal, and T. Huschka, “Simulation based optimization: Applications in healthcare,” 2015, 10.1109/WSC.2015.7408251

R. Haijema, J. van der Wal, and N. M. van Dijk, “Blood platelet production: Optimization by dynamic programming and simulation,” Comput. Oper. Res., vol. 34, no. 3, pp. 760–779, 2007, [Online]. Available: http://www.sciencedirect.com/science/article/pii/S030505480500119X .

R. Haijema, N. van Dijk, J. van der Wal, and C. Smit Sibinga, “Blood platelet production with breaks: Optimization by SDP and simulation,” Int. J. Prod. Econ., vol. 121, no. 2, pp. 464–473, 2009, https://doi.org/10.1016/j.ijpe.2006.11.026

N. van Dijk, R. Haijema, J. van der Wal, and C. S. Sibinga, “Blood platelet production: a novel approach for practical optimization,” Transfusion, vol. 49, no. 3, pp. 411–420, 2009, https://doi.org/10.1111/j.1537-2995.2008.01996.x

J. T. Blake, N. Heddle, M. Hardy, and R. Barty, “Simplified platelet ordering using shortage and outdate targets,” Int. J. Heal. Manag. Inf., vol. 1, no. 2, pp. 145–166, 2010.

D. Zhou, L. C. Leung, and W. P. Pierskalla, “Inventory management of platelets in hospitals: Optimal inventory policy for perishable products with regular and optional expedited replenishments,” Manuf. Serv. Oper. Manag., vol. 13, no. 4, pp. 420–438, 2011, https://doi.org/10.1287/msom.1110.0334

U. Abdulwahab and M. I. M. Wahab, “Approximate dynamic programming modeling for a typical blood platelet bank,” Comput. Ind. Eng., vol. 78, pp. 259–270, 2014, https://doi.org/10.1016/j.cie.2014.07.017

D. Dalalah, O. Bataineh, and K. A. Alkhaledi, “Platelets inventory management: A rolling horizon Sim–Opt approach for an age-differentiated demand,” J. Simul., vol. 13, no. 3, pp. 209–225, 2019, https://doi.org/10.1080/17477778.2018.1497461

I. Civelek, I. Karaesmen, and A. Scheller-Wolf, “Blood platelet inventory management with protection levels,” Eur. J. Oper. Res., vol. 243, no. 3, pp. 826–838, 2015, https://doi.org/10.1016/j.ejor.2015.01.023

R. Haijema, N. M. van Dijk, and J. van der Wal, “Blood Platelet Inventory Management,” in Markov Decision Processes in Practice, R. J. Boucherie and N. M. van Dijk, Eds. Cham: Springer International Publishing, 2017, pp. 293–317. https://doi.org/10.1007/978-3-319-47766-4_10

H. Jalali and I. Van Nieuwenhuyse, “Simulation optimization in inventory replenishment: a classification,” IIE Trans., vol. 47, no. 11, pp. 1217–1235, 2015, 10.1080/0740817X.2015.1019162

C. S. Pramudyo, “Genetic Algorithm Parameters in a Vendor Managed Inventory Model,” IJID (International J. Informatics Dev., vol. 7, no. 1, p. 36, Jan. 2019, doi: 10.14421/ijid.2018.07108.

A. Beklari, M. S. Nikabadi, H. Farsijani, and A. Mohtashami, “A Hybrid Algorithm for Solving Vendors Managed Inventory (VMI) Model with the Goal of Maximizing Inventory Turnover in Producer Warehouse,” Ind. Eng. Manag. Syst., vol. 17, no. 3, pp. 570–587, 2018, [Online]. Available: http://iemsjl.org/journalarticle.php?code=63301

G. Subramaniam and A. Gosavi, “Simulation-based optimisation for material dispatching in Vendor-Managed Inventory systems,” Int. J. Simul. Process Model., vol. 3, no. 4, p. 238, 2007, https://doi.org/10.1504/IJSPM.2007.016314

W. Liu, G. Y. Ke, J. Chen, and L. Zhang, “Scheduling the distribution of blood products: A vendor-managed inventory routing approach,” Transp. Res. Part E Logist. Transp. Rev., vol. 140, p. 101964, Aug. 2020, https://doi.org/10.1016/j.tre.2020.101964

T. A. Al-Ameri, N. Shah, and L. G. Papageorgiou, “Optimization of vendor-managed inventory systems in a rolling horizon framework,” Comput. Ind. Eng., vol. 54, no. 4, pp. 1019–1047, May 2008, https://doi.org/10.1016/j.cie.2007.12.003

F.-M. De Rainville, F.-A. Fortin, M. Gardner, M. Parizeau, and C. Gagné, “DEAP: A Python framework for Evolutionary Algorithms,” in GECCO’12 - Proceedings of the 14th International Conference on Genetic and Evolutionary Computation Companion, 2012, pp. 85–92, https://doi.org/10.1145/2330784.2330799

F.-A. Fortin, F.-M. De Rainville, M.-A. Gardner, M. Parizeau, and C. Gagné, “Evolutionary Tools — DEAP 1.3.1 documentation.” 2020, Accessed: Jul. 29, 2020. [Online]. Available: https://deap.readthedocs.io/en/master/api/tools.html

A. F. Osorio, S. C. Brailsford, H. K. Smith, S. P. Forero-Matiz, and B. A. Camacho-Rodríguez, “Simulation-optimization model for production planning in the blood supply chain,” Health Care Manag. Sci., vol. 20, no. 4, pp. 548–564, 2017, https://doi.org/10.1007/s10729-016-9370-6

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.

Derechos de autor 2022 Juan David Carvajal-Hernandez, Andres Felipe Osorio-Muriel, PhD