Resumen
Los flujos de lodos y detritos son amenazas naturales de origen hidrometeorológico y geológico; las amenazas geológicas son aquellas originadas por procesos terrestres como terremotos, emisiones volcánicas y movimientos en masa; mientras que las amenazas hidrometeorológicas son de origen atmosférico e hidrológico y contribuyen de forma importante a la generación de amenazas geológicas; por lo que un flujo de lodos y detritos se origina por una combinación de eventos geológicos e hidrológicos. En algunos países este fenómeno genera muchas pérdidas económicas y humanas cada año y con los efectos del cambio climático estos podrían aumentarse. Evaluar la amenaza, su estudio y modelación es importante para una adecuada gestión del riesgo, por lo que el objetivo del estudio fue revisar detalladamente las metodologías y modelos utilizados actualmente en el estudio de flujos de lodos y detritos, su alcance y limitaciones, para lo cual se realizó una revisión bibliométrica extensa de los modelos y estudios en los cuales se aplicaron estas metodologías. Se encontró que el análisis del fenómeno requiere una aproximación integrada de aspectos hidrológicos, geotécnicos e hidráulicos, algunos modelos permiten describir su comportamiento reológico y factores condicionantes asociados al clima y suelo, sin embargo, la caracterización de otros aspectos como arrastre y cambios en las propiedades del fluido son aún limitados.
IPCC, “Special Report: Global Warming of 1.5 oC,” 2018. Accessed: May 12, 2021. [Online]. Available: https://www.ipcc.ch/sr15/.
UNDRR, “Global Assessment Report on Disaster Risk Reduction,” 2019. [Online]. Available: https://gar.unisdr.org.
United Nations, “Global Assessment Report on Disaster Risk Reduction: Risk and poverty in a changing climate,” 2009. doi: 10.1037/e522342010-005.
UNDRR, “Hazard | UNDRR,” Terminology, 2017. https://www.undrr.org/terminology/hazard (accessed Apr. 14, 2021).
Integrated Research on Disaster Risk, “Peril Classification and Hazards Glossary (IRDR DATA Publication No. 1),” 2014.
Corporación OSSO, “Escudriñando en los desastres a todas las escalas.” p. 123, 1999, [Online]. Available: http://www.osso.org.co/docu/publicac/1999/escudrinhando/completo.pdf.
T. R. Davies, C. J. Phillips, A. J. Pearce, and X. B. Zhang, “Debris flow behaviour - an integrated overview,” Erosion, debris flows Environ. Mt. Reg. Proc. Int. Symp. Chengdu, 1992, no. 209, pp. 217–225, 1992.
J. Suarez, Control de erosión en zonas tropicales. 2001.
P. Y. Julien and C. S. León, “Mud floods, mudflows and debris flows classification, rheology and structural design,” Proceedings of International Workshop on the Debris Flow Disaster. p. 15, 2000.
J. Suárez, Deslizamientos: Análisis geotécnico. 2009.
D. Rickenmann, Methods for the Quantitative Assessment of Channel Processes in Torrents (Steep Streams). CRC Press, 2016.
P. Coussot and M. Meunier, “Recognition, classification and mechanical description of debris flows,” Earth-Science Rev., vol. 40, no. 3–4, 1996, doi: 10.1016/0012-8252(95)00065-8.
J. S. O’Brien and P. Y. Julien, “On the importance of mudflow routing,” 1997.
O. Hungr, S. G. Evans, M. J. Bovis, and J. N. Hutchinson, “A review of the classification of landslides of the flow type,” Environ. Eng. Geosci., vol. 7, no. 3, 2001, doi: 10.2113/gseegeosci.7.3.221.
F. Moutarde and A. Ultsch, “1D Modeling of mud/debris unsteady flows,” vol. 125, no. August, pp. 25–32, 1999.
E. Bingham and Green, “Paint, a plastic material and not a viscous liquid; the mesurement of its mobility and yield value,” Proccedings Am. Soc. Test. Mater., pp. 640–664, 1919.
W. H. Herschel and R. Bulkley, “Measurement of consistency as applied to rubber-benzene solutions,” Proc ASTM Part II, vol. 26, no. 82, 1926.
J. S. O’Brien, P. Y. Julien, and D. S. Bowles, “Physical Properties and Mechanics of Hyperconcentrated Sediment Flows, Conference, Delineation of landslide, flash flood, and debris flow hazards in Utah,” in GENERAL SERIES- UTAH WATER RESEARCH LABORATORY UWRL G, Delineation of landslide, flash flood, and debris flow hazards in Utah, Conference, Delineation of landslide, flash flood, and debris flow hazards in Utah, 1985, no. 85/03, pp. 260–280, [Online]. Available: https://www.tib.eu/de/suchen/id/BLCP%3ACN006200643.
FLO-2d Software Inc., “FLO-2D Reference Manual.” 2019.
R. Bagnold, “Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear,” Proc. R. Soc. London. Ser. A. Math. Phys. Sci., vol. 225, no. 1160, 1954, doi: 10.1098/rspa.1954.0186.
T. Takahashi, “Mechanical Characteristics of Debris flow,” ASCE J Hydraul Div, vol. 104, no. 8, 1978, doi: 10.1061/jyceaj.0005046.
T. Takahashi, “A mechanism of ocurrence of mud-debris flows and their characteristics in motion,” Annuals of Disaster Prevention Research Institute, Kyoto University, 20B-2. pp. 405–435, 1977.
A. Johnson and R. O. Kehle, “Physical Processes in Geology,” Phys. Today, vol. 25, no. 2, 1972, doi: 10.1063/1.3070726.
A. Voellmy, “Über di e Zer störungskraft v on Law inen,” Schweizerische Bauzetung, pp. 212–285, 1955.
H. Körner, “Reichweite und G eschwindigkeit v on Bergstürzen und FlieBschneelawinen,” Rock Mech., pp. 225–256, 1976.
Q. Zou, P. Cui, J. He, Y. Lei, and S. Li, “Regional risk assessment of debris flows in China—An HRU-based approach,” Geomorphology, vol. 340, pp. 84–102, 2019, doi: 10.1016/j.geomorph.2019.04.027.
M. Hürlimann, D. Rickenmann, V. Medina, and A. Bateman, “Evaluation of approaches to calculate debris-flow parameters for hazard assessment,” Eng. Geol., vol. 102, no. 3–4, pp. 152–163, 2008, doi: 10.1016/j.enggeo.2008.03.012.
M. Četina, R. Rajar, T. Hojnik, M. Zakrajšek, M. Krzyk, and M. Mikoš, “Case Study: Numerical Simulations of Debris Flow below Stože, Slovenia,” J. Hydraul. Eng., vol. 132, no. 2, pp. 121–130, 2006, doi: 10.1061/(asce)0733-9429(2006)132:2(121).
V. Medina, A. Bateman, and M. Hürlimann, “A 2D finite volume model for debris flow and its application to events occurred in the Eastern Pyrenees,” Int. J. Sediment Res., vol. 23, no. 4, pp. 348–360, Dec. 2008, doi: 10.1016/S1001-6279(09)60006-8.
V. Medina, M. Hürlimann, and A. Bateman, “Application of FLATModel, a 2D finite volume code, to debris flows in the northeastern part of the Iberian Peninsula,” Landslides, vol. 5, no. 1, pp. 127–142, Feb. 2008, doi: 10.1007/s10346-007-0102-3.
F. Bregoli et al., “Development of preliminary assessment tools to evaluate debris flow risks,” Int. Conf. Comput. Methods Water Resour., pp. 1–9, 2010, [Online]. Available: http://congress.cimne.com/cmwr2010/Proceedings/docs/p284.pdf.
S. M. Mila, “Modelación de flujos de derrubios empleando el método SPH. Aplicación a casos reales,” Universidad Politécnica de Madrid, 2009.
G. Bertoldi, V. D’Agostino, and B. McArdell, “An integrated method for debris flow hazard mapping using 2D runout models,” in 12th Congress INTERPRAEVENT, 2012, pp. 435–446.
R. Gomes, R. Guimarães, O. de Carvalho, Júnior, N. Fernandes, and E. do Amaral Júnior, “Combining Spatial Models for Shallow Landslides and Debris-Flows Prediction,” Remote Sens., vol. 5, no. 5, pp. 2219–2237, May 2013, doi: 10.3390/rs5052219.
E. M. O’Loughlin, “Prediction of Surface Saturation Zones in Natural Catchments by Topographic Analysis,” Water Resour. Res., vol. 22, no. 5, pp. 794–804, 1986, doi: https://doi.org/10.1029/WR022i005p00794.
A. D’Aniello, L. Cozzolino, L. Cimorelli, C. Covelli, R. Della Morte, and D. Pianese, “One-dimensional Simulation of Debris-flow Inception and Propagation,” Procedia Earth Planet. Sci., vol. 9, pp. 112–121, 2014, doi: 10.1016/j.proeps.2014.06.005.
Ministerio de Minas y Energía and Instituto Colombiano de Geología y Minería, “Formulacion de una guia metodológica para la evaluacion de la amenaza por movimientos en masa tipo flujo : caso piloto cuenca quebrada La Negra , Útica – Cundinamarca.” 2009.
A. Sepúlveda, J. Patiño Franco, and C. Rodríguez Pineda, “Metodología para evaluación de riesgo por flujo de detritos detonados por lluvia: caso Útica, Cundinamarca, Colombia,” Obras y Proy., no. 20, pp. 31–43, Dec. 2016, doi: 10.4067/S0718-28132016000200003.
J. P. Páez, “Modelación matemática de flujos de avalancha.” Bogotá D.C, 2016, [Online]. Available: http://hdl.handle.net/1992/13751.
P. U. Javeriana and UNGRD, “Proyecto Consultoría de los estudios de diseño del sistema de alerta temprana para avenidas torrenciales y crecientes súbitas generadas por precipitaciones de la microcuenca de los ríos Mulato, Sangoyaco, quebradas Taruca y Taruquita, municipio de Mocoa.” Bogotá D.C, 2018, [Online]. Available: http://hdl.handle.net/20.500.11762/27207.
C. L. Kain, E. H. Rigby, and C. Mazengarb, “A combined morphometric, sedimentary, GIS and modelling analysis of flooding and debris flow hazard on a composite alluvial fan, Caveside, Tasmania,” Sediment. Geol., vol. 364, pp. 286–301, Feb. 2018, doi: 10.1016/j.sedgeo.2017.10.005.
B. Bout, L. Lombardo, C. J. van Westen, and V. G. Jetten, “Integration of two-phase solid fluid equations in a catchment model for flashfloods, debris flows and shallow slope failures,” Environ. Model. Softw., vol. 105, pp. 1–16, 2018, doi: 10.1016/j.envsoft.2018.03.017.
C. Gregoretti, L. M. Stancanelli, M. Bernard, M. Boreggio, M. Degetto, and S. Lanzoni, “Relevance of erosion processes when modelling in-channel gravel debris flows for efficient hazard assessment,” J. Hydrol., vol. 568, no. September 2018, pp. 575–591, 2019, doi: 10.1016/j.jhydrol.2018.10.001.
J. Cabrera, “Modelos hidrológicos,” Instituto para la mitigación de los efectos del fenómeno El Niño - IMEFEN. p. 8, 2012, [Online]. Available: http://www.imefen.uni.edu.pe/Temas_interes/modhidro_1.pdf.
K. J. Beven and M. J. Kirkby, “A physically based, variable contributing area model of basin hydrology / Un modèle à base physique de zone d’appel variable de l’hydrologie du bassin versant,” Hydrol. Sci. Bull., vol. 24, no. 1, pp. 43–69, 1979, doi: 10.1080/02626667909491834.
D. G. Tarboton, Rainfall - Runoff Processes. 2003.
US Army Corps of Engineers - Hydrologic Engineering Center, “Hydrologic Modeling System Technical Reference Manual,” no. Marzo. 2000.
S. . Neitsch, J. . Arnold, J. . Kiniry, and J. . Williams, “Soil & Water Assessment Tool Theoretical Documentation Version 2009,” Texas Water Resources Institute. pp. 1–647, 2011, doi: 10.1016/j.scitotenv.2015.11.063.
Universidad Politécnica de Valencia, “Descripción del modelo conceptual distribuido de simulación hidrológica TETIS.” p. 86, 2008, [Online]. Available: http://lluvia.dihma.upv.es/ES/software/software.html.
C. Perrin, C. Michel, and V. Andréassian, “Improvement of a parsimonious model for streamflow simulation,” J. Hydrol., vol. 279, no. 1–4, pp. 275–289, 2003, doi: 10.1016/S0022-1694(03)00225-7.
N. Ajami, H. Gupta, T. Wagener, and S. Sorooshian, “Calibration of a semi-distributed hydrologic model for streamflow estimation along a river system,” J. Hydrol., vol. 298, no. 1–4, pp. 112–135, 2004, doi: 10.1016/j.jhydrol.2004.03.033.
DHI, “MIKE SHE Volume 1: User Guide. The Experts in WATER ENVIRONMENTS,” DHI Software Licence Agreement, vol. 1, no. 1. p. 420, 2017.
L. Ciarapica and E. Todini, “TOPKAPI: A model for the representation of the rainfall-runoff process at different scales,” Hydrol. Process., vol. 16, no. 2, pp. 207–229, 2002, doi: 10.1002/hyp.342.
C. Mazzetti, “TOPographic Kinematic APproximation and Integration Technical References.” 2015.
S. L. Markstrom, S. R. Regan, L. E. Hay, and E. Al, “PRMS-IV Precipitation-Runoff Modeling System,” in Modeling Techniques, 2015.
A. P. J. De Roo and R. J. E. Offermans, “LISEM: a physically-based hydrological and soil erosion model for basin-scale water and sediment management,” in Proc. Modelling and Management of Sustainable Basin-scale Water Resource Systems Symposium, Boulder, 1995, no. 231, pp. 399–407.
A. P. J. De Roo, C. G. Wesseling, V. G. Jetten, and C. J. Ritsema, “LISEM: a physically-based hydrological and soil erosion model incorporated in a GIS,” in Application of geographic information systems in hydrology and water resources management. Proc. HydroGIS’96 conference, Vienna, 1996, 1996, no. August, pp. 395–403.
Hydronia LLC, “RiverFlow2D Two-Dimensional Flood and River Dynamics Model,” no. September. 2020.
W. E. Dietrich and D. R. Montgomery, “SHALSTAB A digital terrain model for mapping shallow landslide,” 1998. http://calm.geo.berkeley.edu/geomorph/shalstab/index.htm.
A. W. Bishop, “The use of the Slip Circle in the Stability Analysis of Slopes,” Géotechnique, vol. 5, no. 1, pp. 7–17, 1955, doi: 10.1680/geot.1955.5.1.7.
Soil and Terrestrial Environmental Physics Research Group - ETH Zurich, “STEP-TRAMM,” 2021. https://emeritus.step.ethz.ch/step-tramm.html.
R. L. Baum, W. Z. Savage, and J. W. Godt, “TRIGRS — A Fortran Program for Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Analysis, Version 2.0,” U.S. Geological Survey Open-File Report, no. 2008–1159. p. 81, 2008.
Iverson, “Landslide triggering by rain infiltration,” Water Resour. Res., vol. 36, no. 7, pp. 1897–1910, Jul. 2000, doi: https://doi.org/10.1029/2000WR900090.
W. Zhou, J. Fang, C. Tang, and G. Yang, “Empirical relationships for the estimation of debris flow runout distances on depositional fans in the Wenchuan earthquake zone,” J. Hydrol., vol. 577, no. July, p. 123932, 2019, doi: 10.1016/j.jhydrol.2019.123932.
J. Huang, T. C. Hales, R. Huang, N. Ju, Q. Li, and Y. Huang, “A hybrid machine-learning model to estimate potential debris-flow volumes,” Geomorphology, vol. 367, p. 107333, 2020, doi: 10.1016/j.geomorph.2020.107333.
D. H. Lee, E. Cheon, H. H. Lim, S. K. Choi, Y. T. Kim, and S. R. Lee, “An artificial neural network model to predict debris-flow volumes caused by extreme rainfall in the central region of South Korea,” Eng. Geol., vol. 281, no. December 2020, p. 105979, 2021, doi: 10.1016/j.enggeo.2020.105979.
V. D’Agostino and L. Marchi, “Geomorphological estimation of debris-flow volumes in alpine basins,” in International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Proceedings, 2003, vol. 2, pp. 1097–1106.
D. Bernard, E. Trousil, and P. Santi, “Estimation of inundation areas of post-wildfire debris flows in Southern California USA,” Eng. Geol., vol. 285, no. December 2020, p. 105991, 2021, doi: 10.1016/j.enggeo.2021.105991.
M. Berti and A. Simoni, “Prediction of debris flow inundation areas using empirical mobility relationships,” Geomorphology, vol. 90, no. 1, pp. 144–161, 2007, doi: https://doi.org/10.1016/j.geomorph.2007.01.014.
S. P. Schilling, “LAHARZ; GIS programs for automated mapping of lahar-inundation hazard zones,” 1998. doi: 10.3133/ofr98638.
M. Berti and A. Simoni, “DFLOWZ: A free program to evaluate the area potentially inundated by a debris flow,” Comput. Geosci., vol. 67, pp. 14–23, Jun. 2014, doi: 10.1016/j.cageo.2014.02.002.
H. Ikeya, “A method of designation for area in danger of debris flow,” in Erosion and sediment transport in Pacific rim steeplands. Proc. Christchurch symposium, January 1981, 1981, pp. 576–588.
D. Rickenmann, “Empirical Relationships for Debris Flows,” Nat. Hazards, vol. 19, no. 1, pp. 47–77, 1999, doi: 10.1023/A:1008064220727.
J. Corominas, “The angle of reach as a mobility index for small and large landslides,” Can. Geotech. J., vol. 33, no. 2, pp. 260–271, May 1996, doi: 10.1139/t96-005.
A. Lorente, S. Beguería, J. C. Bathurst, and J. M. García-Ruiz, “Debris flow characteristics and relationships in the Central Spanish Pyrenees,” Nat. Hazards Earth Syst. Sci., vol. 3, no. 6, pp. 683–691, 2003, doi: 10.5194/nhess-3-683-2003.
M. Cesca, “Studio dei meccanismi di deposizione dei debris flow : Integrazioni tra esperienze di laboratorio, analisi di Campo e modellazioni numerechi. PhD Thesis,” Universitá Degli Studi Di Padova, 2008.
V. D’Agostino and M. Cesca, “Reologia e distanza di arresto dei debris flow: sperimentazione su modello fisico a piccolo scala,” 2009.
L. Marchi and V. D’Agostino, “Estimation of debris-flow magnitude in eastern italian Alps,” Earth Surf. Process. Landforms, pp. 207–220, 2004.
C. R. Chhorn, G. Kim, C. Y. Yune, and S. W. Lee, “Analysis of the Magnitude of Debris Flows in Korea,” Nat. Hazards Rev., vol. 16, no. 4, p. 04015001, 2015, doi: 10.1061/(asce)nh.1527-6996.0000175.
R. Perla, T. T. Cheng, and D. M. McClung, “A Two–Parameter Model of Snow–Avalanche Motion,” J. Glaciol., vol. 26, no. 94, pp. 197–207, 1980, doi: DOI: 10.3189/S002214300001073X.
M. Hürlimann, R. Copons, and J. Altimir, “Detailed debris flow hazard assessment in Andorra: A multidisciplinary approach,” Geomorphology, vol. 78, no. 3–4, pp. 359–372, Aug. 2006, doi: 10.1016/j.geomorph.2006.02.003.
M. Mergili, “r.avaflow The mass flow simulation tool r.avaflow 2.3 User manual,” 2020. https://www.avaflow.org/manual.php.
S. P. Pudasaini, “A general two-phase debris flow model,” J. Geophys. Res. Earth Surf., vol. 117, no. F3, p. n/a-n/a, Sep. 2012, doi: 10.1029/2011JF002186.
S. P. Pudasaini and M. Mergili, “A Multi‐Phase Mass Flow Model,” J. Geophys. Res. Earth Surf., vol. 124, no. 12, pp. 2920–2942, Dec. 2019, doi: 10.1029/2019JF005204.
P. Bartelt et al., “RAMMS - Rapid Mass Movements Simulation User Manual.” 2017.
T. Baggio, M. Mergili, and V. D’Agostino, “Advances in the simulation of debris flow erosion: The case study of the Rio Gere (Italy) event of the 4th August 2017,” Geomorphology, vol. 381, p. 107664, 2021, doi: 10.1016/j.geomorph.2021.107664.
G. Rosatti, N. Zorzi, D. Zugliani, S. Piffer, and A. Rizzi, “A Web Service ecosystem for high-quality, cost-effective debris-flow hazard assessment,” Environ. Model. Softw., vol. 100, pp. 33–47, 2018, doi: 10.1016/j.envsoft.2017.11.017.
G. Rosatti and L. Begnudelli, “Two-dimensional simulation of debris flows over mobile bed: Enhancing the TRENT2D model by using a well-balanced Generalized Roe-type solver,” Comput. Fluids, vol. 71, pp. 179–195, Jan. 2013, doi: 10.1016/j.compfluid.2012.10.006.
S. Beguería, T. W. J. Van Asch, J.-P. Malet, and S. Gröndahl, “A GIS-based numerical model for simulating the kinematics of mud and debris flows over complex terrain,” Nat. Hazards Earth Syst. Sci., vol. 9, no. 6, pp. 1897–1909, Nov. 2009, doi: 10.5194/nhess-9-1897-2009.
H. An, M. Kim, G. Lee, Y. Kim, and H. Lim, “Estimation of the area of sediment deposition by debris flow using a physical-based modeling approach,” Quat. Int., vol. 503, no. September 2018, pp. 59–69, 2019, doi: 10.1016/j.quaint.2018.09.049.
S. M. Tayyebi, M. Pastor, and M. M. Stickle, “Two-phase SPH numerical study of pore-water pressure effect on debris flows mobility: Yu Tung debris flow,” Comput. Geotech., vol. 132, no. October 2020, p. 103973, 2021, doi: 10.1016/j.compgeo.2020.103973.
S. Egashira, N. Honda, and T. Itoh, “Experimental study on the entrainment of bed material into debris flow,” Phys. Chem. Earth, Part C Solar, Terr. Planet. Sci., vol. 26, no. 9, pp. 645–650, 2001, doi: https://doi.org/10.1016/S1464-1917(01)00062-9.
T. Takahashi, Debris flow. Rotterdam, Netherlands: IAHR/AIRH, 1991.
P. Shen et al., “Debris flow enlargement from entrainment: A case study for comparison of three entrainment models,” Eng. Geol., vol. 270, no. September 2019, p. 105581, 2020, doi: 10.1016/j.enggeo.2020.105581.
Z. Han, B. Su, Y. Li, J. Dou, W. Wang, and L. Zhao, “Modeling the progressive entrainment of bed sediment by viscous debris flows using the three-dimensional SC-HBP-SPH method,” Water Res., vol. 182, p. 116031, 2020, doi: 10.1016/j.watres.2020.116031.
Z. Han et al., “Hydrodynamic and topography based cellular automaton model for simulating debris flow run-out extent and entrainment behavior,” Water Res., vol. 193, p. 116872, 2021, doi: 10.1016/j.watres.2021.116872.
B. Quan Luna, J. Blahut, T. van Asch, C. van Westen, and M. Kappes, “ASCHFLOW - A dynamic landslide run-out model for medium scale hazard analysis,” Geoenvironmental Disasters, vol. 3, no. 1, p. 29, Dec. 2016, doi: 10.1186/s40677-016-0064-7.
P. Horton, M. Jaboyedoff, B. Rudaz, and M. Zimmermann, “Flow-R, a model for susceptibility mapping of debris flows and other gravitational hazards at a regional scale,” Nat. Hazards Earth Syst. Sci., vol. 13, no. 4, pp. 869–885, 2013, doi: 10.5194/nhess-13-869-2013.

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Derechos de autor 2025 Jessica Paola Páez Pedraza