Resumen
Introducción: Un exoesqueleto se conceptualiza como un mecanismo estructural externo cuyos segmentos y articulaciones se corresponden con las del cuerpo humano y es capaz de coordinar y amplificar sus movimientos. El objetivo del trabajo se enfoca en desarrollar una tecnología de plataforma robótica de asistencia y métodos de cuantificación para la rehabilitación motora de miembros superiores en ambientes clínicos y ambulatorios para pacientes con afecciones motoras como resultado de enfermedades cerebrovasculares. Métodos: Se presenta a partir de una concepción integradora el diseño del prototipo de un exoesqueleto que permite al paciente realizar movimientos combinados a partir de los cuatro grados de libertad que provee el dispositivo de rehabilitación. El sistema es controlado por medio de una interfaz de usuario desarrollada en Labview, que soporta el control e interacción del usuario con el exoesqueleto, lo cual posibilita que el terapeuta puede modificar la rutina que debe realizar el paciente incluyendo nuevas trayectorias y el número de repeticiones a seguir por el exoesqueleto en las articulaciones de hombro, codo y muñeca. Adicionalmente, posibilita la retroalimentación visual de la actividad electromiográfica del paciente durante la rehabilitación. Resultados: Se presenta el diseño mecánico de la armadura, la implementación de los sistemas de potencia, el desarrollo del sistema de control y de la interfaz de usuario, así como su integración con el sistema mecánico. Conclusiones: Se desarrolla y pone en funcionamiento una avanzada plataforma robótica capaz de desarrollar diversas rutinas terapéuticas combinando 4 grados de libertad en hombro, codo y muñeca, capaz de controlar a través de la interfaz desarrollada desplazamientos regulados, exactos y repetitivos, así como seguir cronológicamente la evolución del paciente registrando la actividad mioeléctrica durante el proceso de rehabilitación.
BLANCO, R.; DELISLE, D.; GARCÍA, J.C.; DÍAZ, C., and LÓPEZ, N. Registrador de electromiogramas destinado a estudios de la marcha. Bioingeniería y Física Médica Cubana. 2008, vol. 9, no. 3.
BRAUNE, W. Determination of body moments of inertia of the human body and its limbs. Berlin: Springer-Verlag, 1988.
CENCIARINI, M.; DOLLAR, A. Biomechanical considerations in the design of lower limb exoskeletons. IEEE International Conference on Rehabilitation Robotics Rehab Week Zurich, 2011. ETH Zurich Science City, Switzerland, June 29 - July 1, 2011.
DELISLE, D.; BLANCO, R.; GARCÍA, J.C.; DÍAZ, C.; LÓPEZ, N.; MARTÍNEZ, A. Módulo digital para electromiógrafo portátil. Ciencia y Tecnología. 2007, vol. 11, pp. 173-178.
ESTÉVEZ, A. Grado de discapacidad en pacientes hemipléjicos del “Policlínico Docente Universitario del Cerro”. Revista Cubana de Medicina General Integral. 2012, vol. 28, no. 4, pp. 682-693.
HUI, Y. Controlling a powered exoskeleton system via electromyographic signals. Proceedings of the 2009 IEEE International Conference on Robotics and Biomimetics December 19 -23, 2009, Guilin, China. pp. 349-353.
LO, H.S. and XIE, S.Q. Exoskeleton robots for upper-limb rehabilitation: State of the art and future prospects. Med Eng Phys. 2011. DOI: 10.1016/j.medengphy.2011.10.004.
ROSEN, J. and MOSHE, B. A myosignal-based powered exoskeleton system. IEEE Transaction on Systems, Man, and Cybernetics—part A: SYSTEMS AND HUMANS. 2001, vol. 31, no. 3.
SAFIZADEH, M. R. and HUSSEIN, M. Kinematic analysis of powered lower limb orthoses for gait rehabilitation of hemiplegic and hemiparetic patients. International Journal of Mathematical Models and Methods in Applied Sciences. 2011, vol. 5, no. 3, pp. 490-498.
STAUBLI, P. Effects of intensive arm training with the rehabilitation robot ARMin II in chronic stroke patients: four single-cases. Journal of Neuro Engineering and Rehabilitation. 2009, vol. 6, no. 46. DOI: 10.1186/1743-0003-6-46.
USER’S MANUAL for M542 V2.0. High performance microstepping driver. Version 1.0, 2008.
WEGE, A. and ZIMMERMANN, A. Electromyography sensor based control for a hand exoskeleton. Proceedings of the 2007 IEEE International Conference on Robotics and Biomimetics December 15 -18, 2007, Sanya, China.
WINTER, D.A. Biomechanics of human movement. New York: John Wiley and Sons, 1979.
Una vez aceptado un trabajo para publicación la revista podrá disponer de él en toda su extensión, tanto directamente como a través de intermediarios, ya sea de forma impresa o electrónica, para su publicación ya sea en medio impreso o en medio electrónico, en formatos electrónicos de almacenamiento, en sitios de la Internet propios o de cualquier otro editor. Este uso tiene como fin divulgar el trabajo en la comunidad científica y académica nacional e internacional y no persigue fines de lucro. Para ello el autor o los autores le otorgan el permiso correspondiente a la revista para dicha divulgación mediante autorización escrita.
Todos los articulos aceptados para publicación son sometidos a corrección de estilo. Por tanto el autor /los autores autorizan desde ya los cambios sufridos por el artículo en la corrección de estilo.
El autor o los autores conservarán los derechos morales y patrimoniales del artículo.