Publicado dic 13, 2022



PLUMX
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar


Ana Cristina Santana Espitia

Yenny Otálora

Hernando Taborda Osorio

##plugins.themes.bootstrap3.article.details##

Resumen

Aprender a contar cantidades discretas de forma exacta constituye uno de los primeros hitos del desarrollo del conocimiento matemático infantil. En los últimos años, ha habido un extenso debate en torno a cómo ocurre este proceso de aprendizaje en preescolar. La actual investigación tuvo como objetivo conocer las temáticas y preguntas de investigación generales desarrolladas en los últimos cinco años en cuanto al aprendizaje del conteo y los números naturales en preescolar. Para ello, se realizó una revisión sistemática en la que se hizo una indagación en las bases de datos ScienceDirect, EBSCO, Web of Science, SpringerLink, JSTOR y Sage. Se obtuvieron 98 artículos de investigación que fueron examinados mediante análisis de conglomerados y mapas jerárquicos a través de NVIVO 11.0.  Se encontraron cuatro núcleos temáticos (Ideas sobre los procesos cognitivos implicados en la comprensión del número, Representación de magnitudes numéricas, Intervenciones para favorecer el desarrollo de habilidades matemáticas y Aspectos estructurales del número), que muestran el panorama actual de investigación sobre aprendizaje del conteo. Los resultados de este estudio son importantes para delimitar posibles programas futuros de investigación, y pueden ser usados por docentes como insumo para enriquecer los ambientes de aprendizaje de sus aulas de clase.

Keywords

counting, math, preschool, number, systematic review, cognitive developmentconteo, matemáticas, preescolar, número, revisión sistemática, desarrollo cognitivo

References
Aunio, P., Korhonen, J., Ragpot, L., Törmänen, M., & Henning, E. (2021). An early numeracy intervention for first-graders at risk for mathematical learning difficulties. Early Childhood Research Quarterly, 55, 252-262. https://doi.org/10.1016/j.ecresq.2020.12.002

Baer, C., & Odic, D. (2019). Certainty in numerical judgments develops independently of the approximate number system. Cognitive Development, 52, 100817. https//doi.org/10.1016/j.cogdev.2019.100817

Bojorque, G., Torbeyns, J., Hannula-Sormunen, M., Van Nijlen, D., & Verschaffel, L. (2017). Development of SFON in Ecuadorian Kindergartners. European Journal of Psychology of Education, 32(3). 449-462. https://www.jstor.org/stable/44951877

Cahoon, A., Gilmore, C., & Simms, V. (2021). Developmental pathways of early numerical skills during the preschool to school transition. Learning and Instruction, 75, 101484, 1-14. https://doi.org/10.1016/j.learninstruc.2021.101484

Cantlon, J., Piantadosi, S., Ferrigno, S., Hugues, K., & Barnard, A. (2015). The origins of counting algorithms. Psychological Science, 26(6), 853-865. https://doi.org/10.1177/0956797615572907

Carey, S. (2009). The Origin of Concepts. USA: Oxford University Press.

Chan, J. Y. -C., & Mazzocco, M. M. M. (2017). Competing features influence children’s attention to number. Journal of Experimental Child Psychology, 156, 62-81. https://doi.org/10.1016/j.jecp.2016.11.008

Chan, J. Y .-C., Praus-Singh, T. L., & Mazzocco, M. M. M. (2020). Parents’ and young children’s attention to mathematical features varies across play materials. Early Childhood Research Quarterly, 50, 65-77. https://doi.org/10.1016/j.ecresq.2019.03.002

Cheon, B. K., Melani, I., & Hong, Y. (2020). How USA-Centric is psychology? An archival study of implicit assumptions of generalizability of findings to human nature based on origins of study samples. Social Psychological and Personality Science, 11(7), 928-937. https://doi.org/10.1177/1948550620927269

Cheung, C. -N., & Lourenco, S. F. (2019). Does 1 + 1 = 2nd? The relations between children’s understanding of ordinal position and their arithmetic performance. Journal of Experimental Child Psychology, 187, 104651. https://doi.org/10.1016/j.jecp.2019.06.004

Chew, C. S., Forte, J. D., & Reeve, R. A. (2016). Cognitive factors affecting children’s nonsymbolic and symbolic magnitude judgment abilities: A latent profile analysis. Journal of Experimental Child Psychology, 152, 173-191. https://doi.org/10.1016/j.jecp.2016.07.001

Ching, B. H. -H., & Nunes, T. (2017). Children’s understanding of the commutativity and complement principles: A latent profile analysis. Learning and Instruction, 47, 65-79. https://doi.org/10.1016/j.learninstruc.2016.10.008

Cornu, V., Schiltz, C., Martin, R., & Hornung, C. (2018). Visuo-spatial abilities are key for young children’s verbal number skills. Journal of Experimental Child Psychology, 166, 604-620. https://doi.org/10.1016/j.jecp.2017.09.006

Crollen, V., Noël, M. P., Honoré, N., Degroote, V, Olivier Collignon. (2020). Investigating the respective contribution of sensory modalities and spatial disposition in numerical training. Journal of Experimental Child Psychology, 190, 104729. https://doi.org/10.1016/j.jecp.2019.104729

Dehaene, S. (2009). Origins of mathematical intuitions. The case of arithmetic. Annual New York Academy of Science, 1156(1), 232-259. https://doi.org/10.1111/j.1749-6632.2009.04469.x

Dehaene, S. (2011). The number sense: How the mind creates mathematics. Oxford University Press.

Fabbri, M., & Guarini, A. (2016). Finger counting habit and spatial–numerical association in children and adults. Consciousness and Cognition, 40, 45-53. https://doi.org/10.1016/j.concog.2015.12.012

Frank, M. C., Everett, D. L., Fedorenko, E., & Gibson, E. (2008). Number as a cognitive technology: Evidence from Pirahã language and cognition. Cognition, 108(3), 819-824. https://doi.org/10.1016/j.cognition.2008.04.007

Friso-van den Bos I,, Kroesbergen, E. H., & Van Luit, J. E. H. (2018). Counting and number line trainings in kindergarten: Effects on arithmetic performance and number sense. Frontiers in Psychology, 9, 975. https://doi.org/10.3389/fpsyg.2018.00975

Gordon, P. (2004). Numerical cognition without words: Evidence from Amazonia. Science, 15 306(5695), 496-499. https://doi.org/10.1126/science.1094492

Hannula, M. M., & Lehtinen, E. (2005). Spontaneous focusing on numerosity and mathematical skills of young children. Learning and Instruction, 15, 237-256. https://doi.org/10.1016/j.learninstruc.2005.04.005

Henrich, J., Heine, S., & Norenzayan, A. (2010). The weirdest people in the world? Behavioral and Brain Sciences, 33(2-3), 61-83. https://doi.org/10.1017/S0140525X0999152X

Hirsch. S., Lambert, K., Coppens, K., & Moeller, K. (2018). Basic numerical competences in large-scale assessment data: Structure and long-term relevance. Journal of Experimental Child Psychology, 167, 32-48. https://doi.org/10.1016/j.jecp.2017.09.015

Izard, V., Pica, P., Spelke, E. S., & Dehaene, S. (2008). Exact equality and successor function: Two key concepts on the path towards understanding exact numbers. Philosophical Psychology, 21(4), 491-505. https://doi.org/10.1080/09515080802285354

Le Corre, M., Li, P., Huang, B. H., Jia, G., & Carey, S. (2016). Numerical morphology supports early number word learning: Evidence from a comparison of young Mandarin and English learners. Cognitive Psychology, 88, 162-186. https://doi.org/10.1016/j.cogpsych.2016.06.003

Leslie, A. M., Gelman, R., & Gallistel, C. R. (2007). Where integers come from. En P. Carruthers, S. Laurence & S. Stich (Eds.), The innate mind. Foundations and the Future (Vol. 3, pp. 109-138). Oxford University Press.

Malone, S. A., Pritchard, V. E., & Hulme, C. (2021). Separable effects of the approximate number system, symbolic number knowledge, and number ordering ability on early arithmetic development. Journal of Experimental Child Psychology, 208, 105120. https://doi.org/10.1016/j.jecp.2021.105120

Miller, K. F., & Stigler, J. W. (1987). Counting in Chinese: Cultural variation in a basic cognitive skill. Cognitive Development, 2(3), 279-305. https://doi.org/10.1016/S0885-2014(87)90091-8

Ouyang, X., Zhang, X., Zhang, Q., & Zou, X. (2021). Antecedents and consequences of young children´s interest in mathematics. Early Childhood Research Quarterly, 57(4), 51-60. https://doi.org/10.1016/j.ecresq.2021.05.005

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., McGuinness, L. A., Stewart, L. A., Thomas, J., Tricco, A. C., Welch, V. A., Whiting. P., & Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Systematic Reviews, 10(1). https://doi.org/10.1186/s13643-021-01626-4

Pedrosa, I., Suárez-Álvarez, J., & García-Cueto, E. (2014). Evidencias sobre la validez de contenido: avances y métodos para su estimación. Acción Psicológica, 10(2), 3-20. https://scielo.isciii.es/pdf/acp/v10n2/02monografico2.pdf

Piantadosi, S., Jara-Ettinger, J., & Gibson, E. (2014). Children’s learning of number words in an indigenous farming-foraging group. Developmental Science, 17(4), 553‑563. https://doi.org/10.1111/desc.12078

Pixner, S., Dresen, V., & Moeller, K. (2018). Differential development of children’s understanding of the cardinality of small numbers and zero. Frontiers in Psychology, 9, 1636. https://doi.org/10.3389/fpsyg.2018.01636

Pui Tam, Y., Tin-Yau Wong, T., & Wai Lan Chan, W. (2019). The relation between spatial skills and mathematical abilities: The mediating role of mental number line representation. Contemporary Educational Psychology, 56, 14-24. https://doi.org/10.1016/j.cedpsych.2018.10.007

Rodríguez, J., Martí, E., & Salsa, A. (2018). Symbolic representations and cardinal knowledge in 3- and 4-year-old children. Cognitive Development, 48, 235-243. https://doi.org/10.1016/j.cogdev.2018.09.004

Schneider, R. M., Sullivan, J., Marusic, F., Zaucer, R., Biswas, P., Mismas, P., Plesnicar, V., & Barner, D. (2020). Do children use language structure to discover the recursive rules of counting? Cognitive Psychology, 117, 201-263. https://doi.org/ 10.1016/j.cogpsych.2019.101263

Schneider, R. M., Pankonin, A., Schachner, A., & Barner, D. (2021). Starting small: Exploring the origins of successor function knowledge. Developmental Science, 24(4), 1-13. https://doi.org/10.1111/desc.13091

Sella, F., Slusser, E., Odic, D., & Krajcsi, A. (2021). The emergence of children’s natural number concepts: Current theoretical challenges. Child Development Perspectives, 15, 265-273. https://doi.org/10.1111/cdep.12428

Spaepen, E., Coppola, M., Spelke, E., Carey, S., & Goldin-Meadow, S. (2011). Number without a language model. Proceedings of the National Academy of Science of the United States of America, 108, 3163-3168.

Valcan, D. S., Davis, H. L., Pino-Pasternak, D., & Malpique, A. A. (2020). Executive functioning as a predictor of children’s mathematics, reading and writing. Journal of Applied Developmental Psychology, 70, 1-18. https://doi.org/10.1016/j.appdev.2020.101196

Wynn, K. (1990). Children’s understanding of counting. Cognition, 36(2), 155-193. https://doi.org/10.1016/0010-0277(90)90003-3

Wynn, K. (1992). Children’s acquisition of the number words and the counting system. Cognitive Psychology, 24(2), 220-251. https://doi.org/10.1016/0010-0285(92)90008-P

Yang, X., Zhang, X., Huo, S., & Zhang, Y. (2020). Differential contributions of cognitive precursors to symbolic versus non-symbolic numeracy in young Chinese children. Early Childhood Research Quarterly, 53, 208-216. https://doi.org/10.1016/j.ecresq.2020.04.003
Cómo citar
Santana Espitia, A. C., Otálora, Y., & Taborda Osorio, H. (2022). Aprendizaje del conteo y los números naturales en preescolar: una revisión sistemática de la literatura. Universitas Psychologica, 21, 1–16. https://doi.org/10.11144/Javeriana.upsy21.acnn
Sección
Especial Monográfico 20 años