Preschool Children’s Learning of Counting and the Natural Numbers: A Systematic Literature Review
HTML Full Text (Spanish)
PDF (Spanish)
XML (Spanish)

Keywords

counting
math
preschool
number
systematic review
cognitive development

How to Cite

Preschool Children’s Learning of Counting and the Natural Numbers: A Systematic Literature Review. (2022). Universitas Psychologica, 21, 1-16. https://doi.org/10.11144/Javeriana.upsy21.acnn
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar

Abstract

Learning to count discrete exact quantities is one of the first milestones in the development of children's mathematical knowledge. In recent years there has been an extensive debate about how this learning process occurs in preschool. The current research aims to identify the themes and general research questions developed in the last five years in terms of children’s counting and learning of the natural number system in preschoolers. To this end, a systematic review was conducted through ScienceDirect, EBSCO, Web of Science, SpringerLink, JSTOR and Sage databases. A total of 98 research articles were obtained and then analyzed by using cluster analysis and hierarchical maps using NVIVO 11.0. Four thematic nuclei were found (Ideas about the cognitive processes involved in the understanding of number, representation of numerical magnitudes, interventions to favor the development of mathematical skills and structural aspects of number), that show the current state of research on counting. The results of this study are important to define possible future research programs and can be used by teachers as input to enrich the learning environments of their classrooms.

HTML Full Text (Spanish)
PDF (Spanish)
XML (Spanish)

Aunio, P., Korhonen, J., Ragpot, L., Törmänen, M., & Henning, E. (2021). An early numeracy intervention for first-graders at risk for mathematical learning difficulties. Early Childhood Research Quarterly, 55, 252-262. https://doi.org/10.1016/j.ecresq.2020.12.002

Baer, C., & Odic, D. (2019). Certainty in numerical judgments develops independently of the approximate number system. Cognitive Development, 52, 100817. https//doi.org/10.1016/j.cogdev.2019.100817

Bojorque, G., Torbeyns, J., Hannula-Sormunen, M., Van Nijlen, D., & Verschaffel, L. (2017). Development of SFON in Ecuadorian Kindergartners. European Journal of Psychology of Education, 32(3). 449-462. https://www.jstor.org/stable/44951877

Cahoon, A., Gilmore, C., & Simms, V. (2021). Developmental pathways of early numerical skills during the preschool to school transition. Learning and Instruction, 75, 101484, 1-14. https://doi.org/10.1016/j.learninstruc.2021.101484

Cantlon, J., Piantadosi, S., Ferrigno, S., Hugues, K., & Barnard, A. (2015). The origins of counting algorithms. Psychological Science, 26(6), 853-865. https://doi.org/10.1177/0956797615572907

Carey, S. (2009). The Origin of Concepts. USA: Oxford University Press.

Chan, J. Y. -C., & Mazzocco, M. M. M. (2017). Competing features influence children’s attention to number. Journal of Experimental Child Psychology, 156, 62-81. https://doi.org/10.1016/j.jecp.2016.11.008

Chan, J. Y .-C., Praus-Singh, T. L., & Mazzocco, M. M. M. (2020). Parents’ and young children’s attention to mathematical features varies across play materials. Early Childhood Research Quarterly, 50, 65-77. https://doi.org/10.1016/j.ecresq.2019.03.002

Cheon, B. K., Melani, I., & Hong, Y. (2020). How USA-Centric is psychology? An archival study of implicit assumptions of generalizability of findings to human nature based on origins of study samples. Social Psychological and Personality Science, 11(7), 928-937. https://doi.org/10.1177/1948550620927269

Cheung, C. -N., & Lourenco, S. F. (2019). Does 1 + 1 = 2nd? The relations between children’s understanding of ordinal position and their arithmetic performance. Journal of Experimental Child Psychology, 187, 104651. https://doi.org/10.1016/j.jecp.2019.06.004

Chew, C. S., Forte, J. D., & Reeve, R. A. (2016). Cognitive factors affecting children’s nonsymbolic and symbolic magnitude judgment abilities: A latent profile analysis. Journal of Experimental Child Psychology, 152, 173-191. https://doi.org/10.1016/j.jecp.2016.07.001

Ching, B. H. -H., & Nunes, T. (2017). Children’s understanding of the commutativity and complement principles: A latent profile analysis. Learning and Instruction, 47, 65-79. https://doi.org/10.1016/j.learninstruc.2016.10.008

Cornu, V., Schiltz, C., Martin, R., & Hornung, C. (2018). Visuo-spatial abilities are key for young children’s verbal number skills. Journal of Experimental Child Psychology, 166, 604-620. https://doi.org/10.1016/j.jecp.2017.09.006

Crollen, V., Noël, M. P., Honoré, N., Degroote, V, Olivier Collignon. (2020). Investigating the respective contribution of sensory modalities and spatial disposition in numerical training. Journal of Experimental Child Psychology, 190, 104729. https://doi.org/10.1016/j.jecp.2019.104729

Dehaene, S. (2009). Origins of mathematical intuitions. The case of arithmetic. Annual New York Academy of Science, 1156(1), 232-259. https://doi.org/10.1111/j.1749-6632.2009.04469.x

Dehaene, S. (2011). The number sense: How the mind creates mathematics. Oxford University Press.

Fabbri, M., & Guarini, A. (2016). Finger counting habit and spatial–numerical association in children and adults. Consciousness and Cognition, 40, 45-53. https://doi.org/10.1016/j.concog.2015.12.012

Frank, M. C., Everett, D. L., Fedorenko, E., & Gibson, E. (2008). Number as a cognitive technology: Evidence from Pirahã language and cognition. Cognition, 108(3), 819-824. https://doi.org/10.1016/j.cognition.2008.04.007

Friso-van den Bos I,, Kroesbergen, E. H., & Van Luit, J. E. H. (2018). Counting and number line trainings in kindergarten: Effects on arithmetic performance and number sense. Frontiers in Psychology, 9, 975. https://doi.org/10.3389/fpsyg.2018.00975

Gordon, P. (2004). Numerical cognition without words: Evidence from Amazonia. Science, 15 306(5695), 496-499. https://doi.org/10.1126/science.1094492

Hannula, M. M., & Lehtinen, E. (2005). Spontaneous focusing on numerosity and mathematical skills of young children. Learning and Instruction, 15, 237-256. https://doi.org/10.1016/j.learninstruc.2005.04.005

Henrich, J., Heine, S., & Norenzayan, A. (2010). The weirdest people in the world? Behavioral and Brain Sciences, 33(2-3), 61-83. https://doi.org/10.1017/S0140525X0999152X

Hirsch. S., Lambert, K., Coppens, K., & Moeller, K. (2018). Basic numerical competences in large-scale assessment data: Structure and long-term relevance. Journal of Experimental Child Psychology, 167, 32-48. https://doi.org/10.1016/j.jecp.2017.09.015

Izard, V., Pica, P., Spelke, E. S., & Dehaene, S. (2008). Exact equality and successor function: Two key concepts on the path towards understanding exact numbers. Philosophical Psychology, 21(4), 491-505. https://doi.org/10.1080/09515080802285354

Le Corre, M., Li, P., Huang, B. H., Jia, G., & Carey, S. (2016). Numerical morphology supports early number word learning: Evidence from a comparison of young Mandarin and English learners. Cognitive Psychology, 88, 162-186. https://doi.org/10.1016/j.cogpsych.2016.06.003

Leslie, A. M., Gelman, R., & Gallistel, C. R. (2007). Where integers come from. En P. Carruthers, S. Laurence & S. Stich (Eds.), The innate mind. Foundations and the Future (Vol. 3, pp. 109-138). Oxford University Press.

Malone, S. A., Pritchard, V. E., & Hulme, C. (2021). Separable effects of the approximate number system, symbolic number knowledge, and number ordering ability on early arithmetic development. Journal of Experimental Child Psychology, 208, 105120. https://doi.org/10.1016/j.jecp.2021.105120

Miller, K. F., & Stigler, J. W. (1987). Counting in Chinese: Cultural variation in a basic cognitive skill. Cognitive Development, 2(3), 279-305. https://doi.org/10.1016/S0885-2014(87)90091-8

Ouyang, X., Zhang, X., Zhang, Q., & Zou, X. (2021). Antecedents and consequences of young children´s interest in mathematics. Early Childhood Research Quarterly, 57(4), 51-60. https://doi.org/10.1016/j.ecresq.2021.05.005

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., McGuinness, L. A., Stewart, L. A., Thomas, J., Tricco, A. C., Welch, V. A., Whiting. P., & Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Systematic Reviews, 10(1). https://doi.org/10.1186/s13643-021-01626-4

Pedrosa, I., Suárez-Álvarez, J., & García-Cueto, E. (2014). Evidencias sobre la validez de contenido: avances y métodos para su estimación. Acción Psicológica, 10(2), 3-20. https://scielo.isciii.es/pdf/acp/v10n2/02monografico2.pdf

Piantadosi, S., Jara-Ettinger, J., & Gibson, E. (2014). Children’s learning of number words in an indigenous farming-foraging group. Developmental Science, 17(4), 553‑563. https://doi.org/10.1111/desc.12078

Pixner, S., Dresen, V., & Moeller, K. (2018). Differential development of children’s understanding of the cardinality of small numbers and zero. Frontiers in Psychology, 9, 1636. https://doi.org/10.3389/fpsyg.2018.01636

Pui Tam, Y., Tin-Yau Wong, T., & Wai Lan Chan, W. (2019). The relation between spatial skills and mathematical abilities: The mediating role of mental number line representation. Contemporary Educational Psychology, 56, 14-24. https://doi.org/10.1016/j.cedpsych.2018.10.007

Rodríguez, J., Martí, E., & Salsa, A. (2018). Symbolic representations and cardinal knowledge in 3- and 4-year-old children. Cognitive Development, 48, 235-243. https://doi.org/10.1016/j.cogdev.2018.09.004

Schneider, R. M., Sullivan, J., Marusic, F., Zaucer, R., Biswas, P., Mismas, P., Plesnicar, V., & Barner, D. (2020). Do children use language structure to discover the recursive rules of counting? Cognitive Psychology, 117, 201-263. https://doi.org/ 10.1016/j.cogpsych.2019.101263

Schneider, R. M., Pankonin, A., Schachner, A., & Barner, D. (2021). Starting small: Exploring the origins of successor function knowledge. Developmental Science, 24(4), 1-13. https://doi.org/10.1111/desc.13091

Sella, F., Slusser, E., Odic, D., & Krajcsi, A. (2021). The emergence of children’s natural number concepts: Current theoretical challenges. Child Development Perspectives, 15, 265-273. https://doi.org/10.1111/cdep.12428

Spaepen, E., Coppola, M., Spelke, E., Carey, S., & Goldin-Meadow, S. (2011). Number without a language model. Proceedings of the National Academy of Science of the United States of America, 108, 3163-3168.

Valcan, D. S., Davis, H. L., Pino-Pasternak, D., & Malpique, A. A. (2020). Executive functioning as a predictor of children’s mathematics, reading and writing. Journal of Applied Developmental Psychology, 70, 1-18. https://doi.org/10.1016/j.appdev.2020.101196

Wynn, K. (1990). Children’s understanding of counting. Cognition, 36(2), 155-193. https://doi.org/10.1016/0010-0277(90)90003-3

Wynn, K. (1992). Children’s acquisition of the number words and the counting system. Cognitive Psychology, 24(2), 220-251. https://doi.org/10.1016/0010-0285(92)90008-P

Yang, X., Zhang, X., Huo, S., & Zhang, Y. (2020). Differential contributions of cognitive precursors to symbolic versus non-symbolic numeracy in young Chinese children. Early Childhood Research Quarterly, 53, 208-216. https://doi.org/10.1016/j.ecresq.2020.04.003

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2022 Ana Cristina Santana Espitia, Yenny Otálora, Hernando Taborda Osorio