Paula Alejandra Baldión

Jaime Eduardo Castellanos Parra


Los estudios sobre la citotoxicidad de los materiales de resina compuesta han demostrado que monómeros de resina dental, como el TEGDMA y HEMA, son capaces de modificar la respuesta celular, la actividad enzimática y la síntesis de ADN en diferentes líneas celulares. Los reportes en la literatura indican que los monómeros pueden actuar como estresores del medio ambiente celular al alterar el balance entre las especies oxidantes y las antioxidantes y afectar la homeostasis celular, lo cual puede traer como consecuencia daño celular. El propósito de esta revisión es presentar los hallazgos sobre la respuesta celular antioxidante frente a las especies reactivas de oxígeno producidas durante la exposición a los monómeros de resina, como un mecanismo de control altamente sofisticado enzimático y no enzimático. Conocer a profundidad los efectos celulares de los materiales dentales puede ayudar a ofrecer alternativas restauradoras que minimicen los efectos colaterales de las restauraciones poliméricas. Cytotoxicity studies on composite resin materials have shown that dental resin monomers such as HEMA and TEGDMA are able to modify the cell response, metabolic activity, and DNA synthesis in various cell lines. Scientific reports indicate that monomers can act as cellular environment stressors by altering the balance between oxidants and antioxidants species, affecting cell homeostasis, which can result in cell damage. The purpose of this review is to present the findings on antioxidant cell response to reactive oxygen species produced during exposure to resin monomers, as a mechanism to control highly sophisticated enzymatic and non-enzymatic mechanisms involved in that response. Deeper knowledge about cell effects of dental materials can help provide restorative alternatives that minimize the side effects of polymer restorations.


1. Eckhardt A, Gerstmayr N, Hiller KA, Bolay C, Waha C, Spagnuolo G, Camargo C, Schmalz G, Schweikl H. TEGDMA-induced oxidative ADN damage and activation of ATM and MAP kinases. Biomaterials. 2009; 30: 2006-14.
2. Schmalz G. The biocompatibility of non-amalgam dental filling materials. Eur J Oral Sci. 1998; 106: 696-706.
3. Geurtsen W. Biocompatibility of resin-modified filling materials. Crit Rev Oral Biol Med. 2000; 11: 333-55.
4. Bouillaguet S. Biological risks of resin-based materials to the dentin pulp complex. Crit Rev Oral Biol Med. 2004; 15: 47-60.
5. Schweikl H, Spagnuolo G, Schmalz G. Genetic and cellular toxicology of dental resin monomers. J Dent Res. 2006; 85: 870-7.
6. Hanks CT, Strawn SE, Wataha JC, Craig RG. Cytotoxic effects of resin components on cultured mammalian fibroblasts. J Dent Res. 1991; 70: 1450-5.
7. Yoshii E. Cytotoxic effects of acrylates and methacrylates: relationships of monomer structures and cytotoxicity. J Biomed Mater Res. 1997; 37: 517-24.
8. Krifka S, Spangnuolo G, Schmalz G, Schweikl H. A review of adaptive mechanisms in cell responses towards oxidative stress caused by dental resin monomers. Biomaterials. 2013; 34: 4555-63.
9. Ma Q. Transcriptional responses to oxidative stress: Pathological and toxicological implications. Pharmacol Therapeut. 2010; 125: 376-93.
10. Sies H, Cárdenas E. Oxidative stress: damage to intact cells and organs. Philos Trans R Soc Lond B Biol Sci. 1985; 311: 617-31.
11. Spagnuolo G, D’Anto V, Valletta R, Strisciuglio C, Schmalz G, Schweikl H, Rengo S. Effect of 2-hydroxyethyl methacrylate on human pulp cell survival pathways ERK and AKT. J Endod. 2008; 34: 684-8.
12. Walther UI, Siagian II, Walther SC, Reichl FX, Hickel R. Antioxidative vitamins decrease cytotoxicity of HEMA and TEGDMA in cultured cell lines. Arch Oral Biol. 2004; 49: 125-31.
13. Van Landuyt KL, Snauwaert J, De Muncka J, Peumansa M, Yoshida Y, Poitevin A, Coutinho E, Suzuki K, Lambrechts P, Van Meerbeek B. Systematic review of the chemical composition of contemporary dental adhesives. Biomaterials. 2007; 28: 3757-85.
14. Nakabayashi N, Saimi Y. Bonding to intact dentin. J Dent Res. 1996; 75: 1706-15.
15. Goossens A. Contact allergic reactions on the eyes and eyelids. Bull Soc Belge Ophtalmol. 2004; 292: 11-7.
16. Paranjpe A, Bordador LC, Wang MY, Hume WR, Jewett A. Resin monomer 2-hydroxyethyl methacrylate (HEMA) is a potent inducer of apoptotic cell death in human and mouse cells. J Dent Res. 2005; 84: 172-7.
17. Pashley EL, Zhang Y, Lockwood PE, Rueggeberg FA, Pashley DH. Effects of HEMA on water evaporation from water–HEMA mixtures. Dent Mater. 1998; 14: 6-10.
18. Nakabayashi N, Takarada K. Effect of HEMA on bonding to dentin. Dent Mater. 1992; 8: 125-30.
19. Liu Y, Tjäderhane L, Breschi L, Mazzoni A, Li N, Mao J, Pashley DH, Tay FR. Limitations in bonding to dentin and experimental strategies to prevent bond degradation. J Dent Res. 2011; 90: 953-68.
20. Asmussen E, Peutzfeldt A. Influence of selected components on crosslink density in polymer structures. Eur J Oral Sci. 2001; 109: 282-5.
21. Samuelsen JT, Dahl JE, Karlsson S, Morisbak E, Becher R. Apoptosis induced by the monomers HEMA and TEGDMA involves formation of ROS and differential activation of the MAP-kinases p38, JNK and ERK. Dent Mater. 2007; 23: 34-9.
22. Walther UI, Siagian II, Walther SC, Reichl FX, Hickel R. Antioxidative vitamins decrease cytotoxicity of HEMA and TEGDMA in cultured cell lines. Arch Oral Biol. 2004; 49: 125-31.
23. Santerre JP, Shajii L, Leung BW. Relation of dental composite formulations to their degradation and the release of hydrolyzed polymeric-resin-derived products. Crit Rev Oral Biol Med. 2001; 12: 136-51.
24. Michelsen VB, Lygre H, Skalevik R, Tveit AB, Solheim E. Identification of organic eluates from four polymer-based dental filling materials. Eur J Oral Sci. 2003; 111: 263-71.
25. Bouillaguet S, Wataha JC, Hanks CT, Ciucchi B, Holz J. In vitro cytotoxicity and dentin permeability of HEMA. J Endod. 1996; 22: 244-8.
26. Hume WR, Gerzina TM. Bioavailability of components of resin-based materials which are applied to teeth. Crit Rev Oral Biol Med. 1996; 7: 172-9.
27. Noda M, Wataha JC, Kaga M, Lockwood PE, Volkmann KR, Sano H. Components of dentinal adhesives modulate heat shock protein 72 expression in heat-stressed THP-1 human monocytes at sublethal concentrations. J Dent Res. 2002; 81: 265-9.
28. Leonarduzzi G, Sottero B, Poli G. Targeting tissue oxidative damage by means of cell signaling modulators: The antioxidant concept revisited. Pharmacol Therapeut. 2010; 128: 336-74.
29. Circu ML, Aw TY. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med. 2010; 48: 749-62.
30. Königsberg MF. Nrf2: La historia de un nuevo factor de transcripción que responde a estrés oxidativo. REB. 2007; 26: 18-25.
31. Schweikl H, Hartmann A, Hiller KA, Spagnuolo G, Bolay C, Brockhoff G, Schmalz G. Inhibition of TEGDMA and HEMA-induced genotoxicity and cell cycle arrest by N-acetylcysteine. Dent Mater. 2007; 23: 688-95.
32. Engelmann J, Leyhausen G, Leibfritz D, Geurtsen W. Effect of TEGDMA on the intracellular glutathione concentration of human gingival fibroblast. J Biomed Mater Res. 2002; 63: 746-51.
33. Krifka S, Hiller KA, Spagnuolo G, Jewett A, Shmalz G, Schweikl H. The influence of glutathione on redox regulaton by antioxidant proteins and apoptosis in macrophages exposed to 2-hidroxyethyl methacrylate (HEMA). Biomaterials. 2012; 33: 5177-86.
34. Geurtsen W, Leyhausen G. Chemical-biological interactions of the resin monomer triethylenglycol-dimetacrylate (TEGDMA). J Dent Res. 2001; 80: 2046-50.
35. Lu SC. Regulation of glutathione synthesis. Mol Aspects Med. 2009; 30: 42-59.
36. Schafer FQ, Buettner GR. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med. 2001: 1191-212.
37. Nocca G, Ragno R, Carbone V, Martorana GE, Rossetti DV, Gambarini G, Giardina B, Lupi A. Identification of glutathione-methacrylates adducts in gingival fibroblasts and erythrocytes by HPLC-MS and capillary electrophoresis. Dent Mater. 2011; 27: 87-98.
38. Stanislawski L, Lefeuvre M, Bourd K, Soheili-Majd E, Goldberg M, Périanin A. TEGDMA-induced toxicity in human fibroblasts is associated with early and drastic glutathione depletion with subsequent production of oxygen reactive species. J Biomed Mater Res A. 2003; 66: 476-82.
39. Noda M, Wataha JC, Lewis JB, Kaga M, Lockwood PE, Messer RL, Sano H. Dental adhesive compounds alter glutathione levels but not glutathione redox balance in human THP-1 monocytic cells. J Biomed Mater Res B Appl Biomat. 2005; 73: 308-14.
40. Samuelsen JT, Kopperud HM, Holme JA, Dragland IS, Christensen T, Dahl JE. Role of thiol-complex formation in 2-hydroxyethyl- methacrylate-induced toxicity in vitro. J Biomed Mater Res A. 2011; 96: 395-401.
41. Boyland E, Chasseaud LF. Enzyme-catalysed conjugations of glutathione with unsaturated compounds. Biochem J. 1967; 104: 95-102.
42. Potter DW, Tran TB. Rates of ethyl acrylate binding to glutathione and protein. Toxicol Lett. 1992; 62: 275-85.
43. Geurtsen W, Leyhausen G. Chemical-biological interactions of the resin monomer triethyleneglycol-dimethacrylate (TEGDMA). J Dent Res. 2001; 80: 2046-50.
44. Lefeuvre M, Bourd K, Loriot MA, Goldberg M, Beaune P, Perianin A, Stanislawki L. TEGDMA modulates glutathione transferase P1 activity in gingival fibroblasts. J Dent Res. 2004; 83: 914-9.
45. Kim NR, Lim BS, Park HC, Son KM, Yang HC. Effects of N-acetylcysteine on TEGDMA- and HEMA-induced suppression of osteogenic differentiation of human osteosarcoma MG63 cells. J Biomed Mater Res B Appl Biomater. 2011; 98B: 300-7.
46. Nocca G, D’Antò V, Desiderio C, Rossetti DV, Valletta R, Baquala AM, Schweikl H, Lupi A, Rengo S, Spagnuolo G. N-acetyl cysteine directed detoxification of 2-hydroxyethyl methacrylate by adduct formation. Biomaterials. 2010; 31: 2508-16.
47. Tsukimura N, Yamada M, Aita H, Hori N, Yoshino F, Chang-II Lee M, Kimoto K, Jewett A, Ohawa T. N-acetyl cysteine (NAC)-mediated detoxification and functionalization of poly(methyl methacrylate) bone cement. Biomaterials. 2009; 30: 3378-89.
48. Zafarullah M, Li WQ, Sylvester J, Ahmad M. Molecular mechanisms of Nacetylcysteine actions. Cell Mol Life Sci. 2003; 60: 6-20.
49. Paranjpe A, Cacalano NA, Hume WR, Jewett A. N-acetylcysteine protects dental pulp stromal cells from HEMA-induced apoptosis by inducing differentiation of the cells. Free Radic Biol Med. 2007; 43:1394-408.
50. Paranjpe A, Cacalano NA, Hume WR, Jewett A. N-acetyl cysteine mediates protection from 2-hydroxyethyl methacrylate induced apoptosis via nuclear factor kappa B-dependent and independent pathways: potential involvement of JNK. Toxicol Sci. 2009; 108: 356-66.
51. Azzi A. Molecular mechanism of alpha-tocopherol action. Free Radic Biol Med. 2007; 43: 16-21.
52. Zingg JM. Modulation of signal transduction by vitamin E. Mol Aspects Med. 2007; 28: 481-506.
53. Zingg JM, Azzi A. Non-antioxidant activities of vitamin E. Curr Med Chem. 2004; 11: 1113-33.
54. Müller JM, Rupec RA, Baeuerle PA. Study of gene regulation by NF-kappa B and AP-1 in response to reactive oxygen intermediates. Methods. 1997; 11: 301-12.
55. Glauert HP. Vitamin E and NF-kappaB activation: a review. Vitam Horm. 2007; 76: 135-53.
56. Traber MG, Packer L. Vitamin E: beyond antioxidant function. Am J Clin Nutr. 1995; 62:1501S-9S.
57. Padayatty S, Katz A, Wang Y, Eck P, Kwon O, Lee JH, Chen S, Corpe C, Dutta A, Dutta SK, Levine M. Vitamin C as an antioxidant: evaluation of its role in disease prevention. J Am Coll Nutr. 2003; 22: 18-35.
58. Wu F, Schuster DP, Tyml K, Wilson JX. Ascorbate inhibits NADPH oxidase subunit p47phox expression in microvascular endothelial cells. Free Radic Biol Med. 2007; 42: 124-31.
59. Cárcamo JM, Pedraza A, Bórquez-Ojeda O, Golde DW. Vitamin C suppresses TNF alpha-induced NF kappa B activation by inhibiting I kappa B alpha phosphorylation. Biochem. 2002; 41: 12995-13002.
60. Elliott R. Mechanisms of genomic and non-genomic actions of carotenoids. Biochim Biophys Acta. 2005; 1740: 147-54.
61. Kastner P, Mark M, Chambon P. Nonsteroid nuclear receptors: what are genetic studies telling us about their role in real life? Cell. 1995; 83: 859-69.
62. Strimpakos AS, Sharma RA. Curcumin: preventive and therapeutic properties in laboratory studies and clinical trials. Antioxid Redox Signal. 2008; 10: 511-45.
63. Fraga CG. Plant polyphenols: how to translate their in vitro antioxidant actions to in vivo conditions. IUBMB Life. 2007; 59: 308-15.
64. Pervaiz S, Holme AL. Resveratrol: its biologic targets and functional activity. Antioxid Redox Signal. 2009; 11: 2851-97.
65. Ho Y, Magnenat J, Gargano M, Cao J. The nature of antioxidant defense mechanisms: a lesson from transgenic studies. Environ Health Perspect. 1998; 106 (Suppl 5): 1219-28.
66. Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic Biol Med. 2010; 49: 1603-16.
67. Miller AF. Superoxide dismutases: ancient enzymes and new insights. FEBS Lett. 2012; 586: 585-95.
68. Johnson F, Giulivi C. Superoxide dismutases and their impact upon human health. Mol Aspects Med. 2005; 26: 340-52.
69. Zámocký M, Gasselhuber B, Furtmüller PG. Obingera C. Molecular evolution of hydrogen peroxide degrading enzymes. Arch Biochem Biophys. 2012; 525: 131-44.
70. Brioukhanov AL, Netrusov AI, Eggen RIL. The catalase and superoxide dismutase genes are transcriptionally up-regulated upon oxidative stress in the strictly anaerobic archaeon Methanosarcina barkeri. Microbiol. 2006; 152: 1671-7.
71. Hiner A, Raven E, Thorneley R, García FC, Rodríguez JL. Mechanisms of compound I formation in heme peroxidases. J Inorg Biochem. 2002; 91: 27-34.
72. Matsunaga I, Shiro Y. Peroxide-utilizing biocatalysts: structural and functional diversity of heme-containing enzymes. Curr Opin Chem Biol. 2004; 8: 127-32.
73. Lee JM, Johnson JA. An important role of Nrf2–ARE pathway in the cellular defense mechanism, J Biochem Mol Biol. 2004; 37: 139-43.
74. Kim J, Cha JN, Surh YJ. A protective role of nuclear factor-erythroid 2-related factor-2 (Nrf2) in inflammatory disorders. Mutat Res. 2010; 690: 12-23.
75. Arrigo AP. Gene expression and the thiol redox state. Free Rad Biol Med. 1999; 27: 936-44.
76. Cotgreave IA, Gerdes RG. Recent trends in glutathione biochemistry-glutathione-protein interactions: a molecular link between oxidative stress and cell proliferation? Biochem Biophys Res Commun. 1998; 242: 1-9.
77. Imlay JA. Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem. 2008; 77: 755-76.
78. Wassmann S, Wassmann K, Nickenig G. Modulation of oxidant and antioxidant enzyme expression and function in vascular. Hypertension. 2004; 44: 381-6.
79. Sagrista ML, Garcia AE, Africa De Madariaga M, Mora M. Antioxidant and pro-oxidant effect of the thiolic compounds N-acetyl-Lcysteine and glutathione against free radical-induced lipid peroxidation. Free Radic Res. 2002; 36: 329-40.
80. Volk J, Engelmann J, Leyhausen G, Geurtsen W. Effects of three resin monomers on the cellular glutathione concentration of cultured human gingival fibroblasts. Dent Mater. 2006; 22: 499-505.
81. Mannervik B, Awasthi YL, Board PG, Hayes JP, Dillio C, Ketterer B, Listowsky I, Morgenstern R, Muramatsu M, Pearson WR, et al. Nomenclature for human glutathione transferase (letter). Biochem J. 1992; 282: 305-6.
82. Zimniak P, Nanduri B, Pikula S, Bandorowicz-Pikula J, Singhal SS, Srivastava SK, Awasthi S, Awasthi YC. Naturally occurring human glutathione-S-transferase GST P1-1 isoforms with isoleucine and valine in position 104 differ in enzymatic properties. Eur J Biochem. 1994; 204: 893-900.
83. Gozzelino R, Jeney V, Soares MP. Mechanisms of cell protection by heme oxygenase-1. Annu Rev Pharmacol Toxicol. 2010; 50: 323-54.
84. Kikuchi G, Yoshida T, Noguchi M. Heme oxygenase and heme degradation. Biochem Biophys Res Commun. 2005; 338: 558-67.
85. Orozco MI, Pedraza JC. Hemo oxigenasa: aspectos básicos y su importancia en el sistema nervioso central. Arch Neurocien. 2010; 15: 47-55.
86. Alam J, Cook JL. How many transcription factors does it take to turn on the heme oxygenase-1 gene? Am J Respir Cell Mol Biol. 2007; 36: 166-74.
87. Schweikl H, Hiller KA, Eckhardt A, Bolay C, Spagnuolo G, Stempfl T, Schmalz G. Differential gene expression involved in oxidative stress response caused by triethylene glycol dimethacrylate. Biomaterials. 2008; 29: 1377-87.
88. Sánchez C, Rodeiro I, Garrido G, Delgado R. Hemo-Oxigenasa 1: un promisorio blanco terapéutico. Acta Farm Bonaerense. 2005; 24: 619-26.
89. Ryter SW, Alam J, Choi AMK. Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol Rev. 2006; 86: 583-650.
90. Matsui T, Unno M, Ikeda-Saito M. Heme oxygenase reveals its strategy for catalyzing three successive oxygenation reactions. Acc Chem Res. 2010; 43: 240-47.
91. Ryter SW, Otterbein LE. Carbon monoxide in biology and medicine. Bioessays. 2004; 26: 270-80.
92. Sedlak TW, Snyder SH. Bilirubin benefits: cellular protection by a biliverdin reductase antioxidant cycle. Pediatrics 2004; 113: 1776-82.
93. Stocker R. Antioxidant activities of bile pigments. Antioxid Redox Signal. 2004; 6: 841-9.
94. Mancuso C, Pani G, Calabrese V. Bilirubin: an endogenous scavenger of nitric oxide and reactive nitrogen species. Redox Rep. 2006; 11: 207-13.
95. Kirby KA, Adin CA. Products of heme oxygenase and their potential therapeutic applications. Am J Physiol Renal Physiol. 2006; 290: 563-71.
Cómo citar
Baldión, P., & Castellanos Parra, J. (2015). Estrés oxidativo inducido por los monómeros de resina dental. Respuesta celular / Oxidative Stress induced by Dental Resin Monomers. Cell Response. Universitas Odontologica, 33(71), 85-97. https://doi.org/10.11144/Javeriana.uo33-71.eoim
Dossier Temático
Artículos más leídos del mismo autor/a