Publicado jun 25, 2015



PLUMX
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar


Diego Fernando Gualtero Escobar

Diana Marcela Buitrago Ramírez

Diego Alejandro Trujillo Pérez

Justo Calderón Robles

Gloria Inés Lafaurie Villamil

##plugins.themes.bootstrap3.article.details##

Resumen

Antecedentes: Se ha propuesto el ácido hipocloroso (HOCl) como un agente antiplaca. El potencial uso de enjuagues con HOCl debe valorarse para establecer si afecta el pH y las propiedades amortiguadoras de la saliva que favorezcan procesos de desmineralización dental. Objetivo: Evaluar el efecto in vitro de enjuagues con HOCl a diferentes concentraciones sobre el pH de la saliva. Métodos: Se recolectaron 20 muestras de saliva total. 1,1 mL de saliva fueron titulados con 0,1 y 0,4 mL de HOCl a diferentes concentraciones (125, 250 y 500 ppm) hasta una proporción en volumen 1:1 o 4:1. El NaCl 0,5 % se utilizó como control de titulación. Se evaluó el volumen requerido de HOCl para inducir un pH crítico de la saliva ≤ 5,5. Se efectuó un análisis descriptivo para todas las variables y un Anova con post hoc de comparaciones múltiples de Bonferroni. Resultados: Ninguna de las concentraciones evaluadas de HOCl afectó la capacidad de la saliva en amortiguar los ácidos en solución a una proporción 1:1. Sin embargo, se alcanzó un pH < 5,5 cuando se aumentó la proporción de HOCl 500 ppm en relación con el volumen de saliva (3:1; p = 0,016). Las concentraciones 250 y 125 ppm no afectan considerablemente el pH de la saliva incluso a proporciones en volumen 6:1 y 9:1, respectivamente. Conclusión: El HOCl a 125 ppm y a 250 ppm no afecta la capacidad de la saliva para neutralizar los ácidos en solución, por lo que estas concentraciones son óptimas para su potencial uso como principio activo de enjuague bucal antiplaca. 

Background: Hypochlorous acid (HOCl) has been proposed as antiplaque agent. The potential use of anti-plaque mouthwashes must be previously evaluated to determine whether it affects damping properties of saliva favoring tooth demineralization processes. Aim: To evaluate in vitro the effect of mouthwashes with HOCl at different concentrations on saliva pH. Methods: 20 whole saliva samples were collected. 1.1 ml of saliva were titrated with 0.1 or 0.4 mL of HOCl at different concentrations (125, 250 y 500 ppm) until a volume ratio 1:1 and 4:1. 0.5% NaCl was used as a titration control. HOCl volume required to induce a critical pH in saliva was assessed at ≤ 5.5. A descriptive analysis for all variables and ANOVA with post hoc Bonferroni with multiple comparisons was conducted. Results: None of the HOCl concentrations evaluated affects the ability of the saliva to neutralize acids in solution at a 1:1 ratio. However, it is reached at pH < 5.5 when the proportion of HOCl at 500 ppm was increased in relation to the volume of saliva (3:1; p = 0.016). Concentrations of 250 and 125 ppm do not affect saliva pH even at proportions in volume of 6:1 and 9:1. Conclusion: HOCl at 125 ppm and 250 ppm does not affect the ability of saliva to neutralize acids in solution and these concentrations are suitable for use as active agent of an antiplaque mouthwash.

Keywords
References
1. Romero HM, Hernández Y. Modificaciones del pH y flujo salival con el uso de aparatología funcional tipo Bimler. Rev Latinoam Ortod Odontopediatr Ortodoncia.ws [internet]. 2009 Mar [citado 2014 nov 15]. Disponible en: www.ortodoncia.ws.
2. Aiuchi H, Kitasako Y, Fukuda Y, Nakashima S, Burrow MF, Tagami J. Relationship between quantitative assessments of salivary buffering capacity and ion activity product forhydroxyapatite in relation to cariogenic potential. Aust Dent J. 2008 Jun; 53(2): 167-71.
3. Moritsuka M, Kitasako Y, Burrow MF, Ikeda M, Tagami J. The pH change after HCl titration into resting and stimulated saliva for buffering capacity test. Aust Dent J. 2006 Jun; 51(2): 170-4.
4. Lamanda A, Cheaib Z, Turgut MD, Lussi A. Protein buffering in model systems and in whole human saliva. PLoS One. 2007 Feb; 2(2): e263.
5. Cury JA, Tenuta LM. Enamel remineralization: controlling the caries disease or treating early caries lesions? Braz Oral Res. 2009; 23(Suppl 1): 23-30.
6. Palmer, RJ. Oral bacterial biofilms: History in progress. Microbiol. 2009 Jul; 155(Pt 7): 2113-4.
7. van der Weijden GA, Hioe KP. A systematic review of the effectiveness of self-performed mechanical plaque removal in adults with gingivitis using a manual toothbrush. J Clin Periodontol. 2005; 32(Suppl 6): 214-28.
8. Riep BG, Bernimoulin JP, Barnett ML. Comparative antiplaque effectiveness of an essential oil and an amine fluoride/stannous fluoride mouthrinse. J Clin Periodontol. 1999 Mar; 26(3): 164-8.
9. Pan PC, Harper S, Ricci-Nittel D, Lux R, Shi W. In-vitro evidence for efficacy of antimicrobial mouthrinses. J Dent. 2010 Jun; 38(Suppl 1): S16-20.
10. Charles CH, Mostler KM, Bartels LL, Mankodi SM. Comparative antiplaque and antigingivitis effectiveness of a chlorhexidine and an essential oil mouthrinse: 6-month clinical trial. J Clin Periodontol. 2004 Oct; 31(10): 878-84.
11. Sharma NC, Araujo MW, Wu MM, Qaqish J, Charles CH. Superiority of an essential oil mouthrinse when compared with a 0.05% cetylpyridinium chloride containing mouthrinse: a six-month study. Int Dent J. 2010 Jun; 60(3): 175-80.
12. Selkon, JB, Cherry GW, Wilson JM, Hughes MA. Evaluation of hypochlorous acid washes in the treatment of chronic venous leg ulcers. J Wound Care. 2006 Jan; 15(1): 33-7.
13. Fu X, Kassim, SY, Parks WC, Heinecke JW. Hypochlorous acid generated by myeloperoxidase modifies adjacent tryptophan and glycine residues in the catalytic domain of matrix metalloproteinase-7 (matrilysin): an oxidative mechanism for restraining proteolytic activity during inflammation. J Biol Chem. 2003 Aug 1; 278(31): 28403-9.
14. Chong-Hou S, Hsein-Kun L. The role of hypochlorous acid as one of the reactive oxygen species in periodontal disease. J Dent Sci. 2009; 4(2): 45-4.
15. Kim C, Cha Y N. Taurine chloramine produced from taurine under inflammation provides anti-inflammatory and cytoprotective effects. Amino Acids. 2014 Jan; 46(1): 89-100.
16. Wang L, Khosrovi B, Najafi R. N-Chloro-2,2-dimethyltaurines: a new class of remarkably stable N-chlorotaurines. Tetrahedron Letters. 2008; 49: 2193-5.
17. Lafaurie GI, Aya MR, Arboleda S, Escalante A, Castillo DM, Millán LV, Calderón JL, Ruiz BN. Eficacia desinfectante del ácido hipocloroso sobre cepas con poder patogénico de cavidad oral. Rev Colomb Investig Odontol. 2009; 1: 3-11.
18. Henao SC, Rocio C, Gaitán JA. Actividad bactericida del HOCl sobre 5 cepas causantes de infección nosocomial. Rev Fac Med (Universidad Nacional de Colombia). 2003; 51(3): 136-42.
19. Naranjo J, Acevedo C, Calderón JL. Uso del ácido hipocloroso en úlceras de miembros inferiores. Informador Médico. 2006; 94: 8-11.
20. Wang L, Bassiri M, Najafi R, Najafi K, Yang J, Khosrovi B, Hwong W, Barati E, Belisle B, Celeri C, Robson MC. Hypochlorous acid as a potential wound care agent: part I. Stabilized hypochlorous acid: a component of the inorganic armamentarium of innate immunity. J Burns Wounds. 2007 Apr; 6: e5.
21. Weiss SJ. Tissue destruction by neutrophils. N Engl J Med. 1989 Feb; 320(6): 365-76.
22. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research. Guidance for industry. Gingivitis: development and evaluation of drugs for treatment or prevention [internet]. Rockville, MD: FDA; 2005 [citado 2014 sep 2]. Disponible en: http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm071693.pdf
23. Method of producing and applications of composition of hypochlorous acid [internet]. [Citado 2014 sep 2]. Disponible en: http://www.wipo.int/portal/en/
24. Navazesh M. Methods for collecting saliva. Ann N Y Acad Sci. 1993 Sep; 694: 72-7.
25. Llena-Puy C. The role of saliva in maintaining oral health and as an aid to diagnosis. Med Oral Patol Oral Cir Bucal. 2006 Aug; 11(5): E449-55.
26. Binnie V, McHugh S, Macpherson L, Borland B, Moir K, Malik K. The validation of self-reported smoking status by analysing cotinine levels in simulated and unstimulated saliva, serum and urine. Oral Dis. 2004 Sep; 10(5): 287-93.
27. Imfeld T. Dental erosion: definition, classification and links. Eur J Oral Sci. 1996 Apr; 104(2 [Pt 2]): 151-5.
28. Hermont AP, Oliveira PA, Martins CC, Paiva SM, Pordeus IA, Auad SM. Tooth erosion and eating disorders: a systematic review and meta-analysis. PLoS One. 2014 Nov; 9(11): e111123.
29. Mckenna SM, Davies KJ. The inhibition of bacterial growth by hypochlorous acid. Possible role in the bactericidal activity of phagocytes. Biochem J. 1988 Sep; 254(3): 685-92.
30. Robson MC, Payne WG, Ko F, Mentis M, Donati G, Shafii SM, Culverhouse S, Wang L, Khosrovi B, Najafi R, Cooper DM, Bassiri M. Hypochlorous acid as a potential wound care agent: part II. Stabilized hypochlorous acid: its role in decreasing tissue bacterial bioburden and overcoming the inhibition of infection on wound healing. J Burns Wounds. 2007 Apr; 6: e6.
31. Cavalcanti AL1, Ramos IA, Leite RB, da Costa Oliveira M, de Melo Menezes K, Fernandes LV, de Castro RD, Vieira FF. Endogenous pH, titratable acidity and total soluble solid content of mouthwashes available in the Brazilian market. Eur J Dent. 2010 Apr; 4(2): 156-9.
32. Hassan SV, Mobarak EH, Fawzi EM. The efficacy of different regimens of chlorhexidine as an antimicrobial agent for a group of Egyptians. J Egypt Public Health Assoc. 2008; 83(5-6): 435-50.
33. Tolentino ES, Chinellato LE, Tarzia O. Saliva and tongue coating pH before and after use of mouthwashes and relationship with parameters of halitosis. J Appl Oral Sci. 2011; 19(2): 90-4.
Cómo citar
Gualtero Escobar, D. F., Buitrago Ramírez, D. M., Trujillo Pérez, D. A., Calderón Robles, J., & Lafaurie Villamil, G. I. (2015). Efecto de enjuagues de ácido hipocloroso sobre el pH de la saliva: estudio in vitro / Effect of Hypochlorous Acid as a Mouthwash on Salivary pH: in vitro Study. Universitas Odontologica, 34(72), 83–90. https://doi.org/10.11144/Javeriana.uo34-72.efea
Sección
Ciencias Básicas, Biotecnología y Bioinformática