Durabilidad de las fresas de diamante tras realizar desgastes en dientes naturales, comparando 4 marcas comerciales, analizado en microscopía electrónica / Durability of Four Diamond Bur Brands after Tooth Preparation. Electronic Microscopy Analysis
##plugins.themes.bootstrap3.article.details##
RESUMEN. Antecedentes: El método de elección para asegurar que la superficie no pierda humectación y evitar lesiones posteriores o recalentamiento pulpar es la utilización de elementos rotatorios diamantados con adecuado estado y corte. La información disponible en la literatura, no relaciona directamente la eficiencia de desgaste de las fresas de diamante, con la cantidad y calidad de diamantes en la superficie del instrumento rotatorio ni establece un número de usos que determine la vida media del instrumento. Objetivo: Evaluar la durabilidad de los diamantes de corte sobre la superficie activa de los instrumentos rotatorios de alta velocidad, tras realizar cierto número de desgastes en dientes naturales, y así proporcionar un margen de uso de las fresas de diamante. Métodos: Se realizó un estudio ex vivo que comparó 4 marcas comerciales de fresas de diamante, grano dentro del rango (64 -126 micras) tipo troncocónica, punta redonda (ISO 850): MDT® (ISRAEL), SWISSTECH® (COLTENE-SUIZA), POINTECH® (CHINA), JOTA® (SUIZA), tras 5 usos clínicos. Se realizaron 5 cortes, cada uno de 0.16 mm de la corona del diente. Posteriormente, las fresas de diamante, se llevaron a microscopía electrónica de barrido, para observar: a) adhesión de diamantes a substrato en cabeza y cuerpo, b) estado de los diamantes en el substrato en cabeza y cuerpo, tras los 5 cortes clínicos y c) estado final de las fresas de diamante utilizadas. Se realizó un análisis cualitativo y cuantitativo. Resultados: Todas las fresas, de las 4 marcas evaluadas, presentaron cambios tras los 5 usos realizados, tanto la cabeza y el cuerpo del instrumento, tuvieron el mismo desgaste. Pese a que todas las muestras presentaron variaciones, fue representativo que en algunas fue más evidente el desalojo y fractura de los diamantes. Conclusión: Es necesario que, tras 5 usos clínicos de los instrumentos, se realice un cambio de este, para garantizar un desgaste realizado por los diamantes y no por fricción, y así evitar daños en la pulpa, y en la adhesión de los materiales restaurativos.
ABSTRACT. Background: Using elements with appropriate state and cut, is the method of choice to ensure the surface doesn’t lose the initial moisture and avoid later injuries, or pulp overheating, if a blunt or worndown tool is used. Little information is available about wear efficiency of diamond coated burs, that also relates the amount and quality of diamonds on the surface of the rotary instrument, according to the number of uses, and the deleterious effects of the diamond coated burs upon the pulp, and the influence over the dentinal sensitivity of the patient. Aim: To evaluate the durability of cut diamonds on the active surface of the high speed diamond coated burs, after making a number of wears on natural teeth, thus providing a margin of use of diamond coated burs. Methods: An ex vivo study comparing four commercial brands of rotary diamond instruments grain within the range (64 -126 microns) tapered round toe type (ISO 850) was conducted: MDT® (ISRAEL), SWISSTECH® (COLTENE-SWITZERLAND), POINTECH® (CHINA), JOTA® (SWITZERLAND), after 5 clinical applications in dental enamel. Five cuts were made in enamel tooth crown. Subsequently, rotary instruments took scanning electron microscopy to observe: a) diamond substrate adhesion in the head and body, b) state of the diamond substrate in the head and body, after 5 cuts in enamel c) final state of the diamond rotary instrument used. Results: A qualitative and quantitative analysis was performed. The four brands tested were unchanged after 5 applications made to enamel, so that both the head and body had the same wear. Although all samples showed variations in some representative was most evident, the eviction and breaking of diamonds. Conclusion: It´s necessary to change the rotary diamond instruments, after 5 uses, to have a good coated tissue and to avoid pulp damage, or restorative materials adhesion failure.
materiales dentales, rehabilitación oral, adhesión, esmalte dental, instrumentos dentales, microscopia electrónica de barrido
2. Pereira Nogueira P, Hybrid Layer Width after Conventional Diamond, Carbide and Ultra-Sound CVD Burs, The Journal of Clinical Pediatric Dentistry Volume 37, Number 1/2012.
3. Áurea Simone Barroso, Topography and presence of a smear layer in deciduous molars prepared with high-speed cutting and ultrasonic abrasion: an in-vitro study, Acta Odontologica Scandinavica, 2011; 69: 165-169.
4. Fernanda Nahas, Evaluation of Residual Dentin after Conventional and Chemomechanical Caries Removal Using SEM, the Journal of Clinical Pediatric Dentistry Volume 32, Number 2/2007.
5. P.E. Murray, Comparison of operative procedure variables on pulpal viability in an ex vivo model, International Endodontic Journal, 41, 389-400, 2008.
6. Rene Garcia, A comparative in vitro efficacy of conventional rotatory and chemomechanical caries removal: Influence on cariogenic flora, microhardness, and residual composition, Journal of Conservative Dentistry Nov-Dec 2014 | Vol 17 Issue 6
7. J P Walsh, A comparison of the heat production and mechanical efficiency of diamond instruments, stones, and burs at 3,000 and 60,000 r.p.m., New Zealand Denial Journal 45; 28-32, 949.
8. M. J. Jackson. Diamond coated dental bur machining of natural and synthetic dental materials. J Mater Sci Mater Med. 2004 Dec; 15(12): 1323-31.
9. Daniel F. Galindo. Tooth Preparation: A study on the effect of different variables and a comparison between conventional and channeled diamond burs. Journal of Prosthodontics 2004; 13(1): 3-16.
10. Rene Garcia, A comparative in vitro efficacy of conventional rotatory and chemomechanical caries removal: Influence on cariogenic flora, microhardness, and residual composition, Journal of Conservative Dentistry Nov-Dec 2014 Vol 17 Issue 6
11. Till Dammaschke, In vitro comparison of ceramic burs and conventional tungsten carbide bud burs in dentin caries excavation, Quintessence Int 2008; 39: 495- 499p
12. J. A Von Fraunhofer. Improved cutting of tooth enamel with dental burs. Quintessence Int. 1987 Jun; 18(6): 383-5.
13. Pereira Nogueira P, Hybrid Layer Width after Conventional Diamond, Carbide and Ultra-Sound CVD Burs, The Journal of Clinical Pediatric Dentistry Volume 37, Number 1/2012.
14. Áurea Simone Barroso, Topography and presence of a smear layer in deciduous molars prepared with high-speed cutting and ultrasonic abrasion: an in-vitro study, Acta Odontologica Scandinavica, 2011; 69: 165-169.
15. P.E. Murray, Comparison of operative procedure variables on pulpal viability in an ex vivo model, International Endodontic Journal, 41, 389-400, 2008.
16. Hatton, Edward H. Fatty changes in the tooth and investing tissues, Journal of Dental Research. jun1928; 8 (3): 417-427.
17. Bruno Neves Cavalcanti. Water flow in high-speed handpiece, Quintessence Int 2005; 36: 361-364.
18. Jayshree Hegde, An in vitro comparison of adhesive techniques and rotary instrumentation on shear bond strength of nanocomposite with simulated pulpal pressure, Journal of Conservative Dentistry Jul-Sept 2011 Vol 14 Issue 3
19. W. Kalss , R. Haubner, B, Diamond deposition on noble metals, Diamond and Related Materials 6 (1997) 240 2
20. H.H.K. Xul, J.R. Kelly. Enamel subsurface damage due to tooth preparation with diamonds. J Dent Res 1997; 76(10): 1698-1706.
21. Simamoto-Junior P, Soares C, Rodrigues R, Verissimo C, Dutra M, Quagliatto P, Novais V. Comparison of different wear burs after cavity preparation and sterilization methods. Rev Odontol Bras Central 2012; 21 (59): 547-552
22. Mohamed F. Ayad. Influence of dental rotary instruments on the roughness and wettability of human dentin surfaces. J Prosthet Dent 2009; 102: 81-88.
23. Pulkit Jhingan, Shear Bond Strength of Self-etching Adhesives to Cavities Prepared by Diamond Bur or Er,Cr:YSGG Laser and Effect of Prior Acid Etching, J Adhes Dent 2015; 17: 505-512.
24. A. Sander. Untersuchung zur Schleifleistung diamantierter Schleifkörper. Stomatologie 2009; 106: 29-34
25. Nca Vitalariu. Morphological changes in dental pulp after the teeth preparation procedure. Romanian Journal of Morphology and Embryology 2005; 46(2): 131-136
26. D. Y. Wang, Implementation of large-scale deposition of diamond films by combustion synthesis, Diamond and Related Materials,2 (1993) 304-310
27. Lourdes Santos-Pinto. The influence of grain size coating and shaft angulation of different diamond tips on dental cutting. Journal of Conservative Dentistry 2011; 14(2): 132-5
28. K. Lonsdale and H. J. Milledge, in R. Berman (ed.), Physical Properties of Diamond, Clarendon Press, Oxford, 1965, p. 48.
29. Daniel F. Galindo. Tooth Preparation: A study on the effect of different variables and a comparison between conventional and channeled diamond burs. Journal of Prosthodontics 2004; 13(1): 3-16.
30. J. A Von Fraunhofer. Improved cutting of tooth enamel with dental burs. Quintessence Int. 1987 Jun; 18(6): 383-5.