Publicado nov 4, 2015



PLUMX
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar


Estefanía Cuéllar Rivas

Mario Alejandro Ortiz Salazar

Judy Villavicencio Flórez

##plugins.themes.bootstrap3.article.details##

Resumen

Antecedentes: el desarrollo del paladar es un evento complejo que requiere la síntesis y la degradación de diferentes componentes de la matriz extracelular, como colágeno tipos I, II y III, fibronectina y ácido hialurónico. Las metaloproteinasas de matriz (MMP) son una familia de proteasas encargadas de la remodelación tisular y su actividad está regulada por sus inhibidores endógenos (TIMP). Diferentes estudios demuestran la participación de MMP y TIMP en la palatogénesis y su relación con la presencia de fisuras oropalatinas. Objetivo: clasificar los diferentes estudios en modelos experimentales y en humanos que evidencien la participación de metaloproteinasas y sus inhibidores en el desarrollo palatino y su relación con patologías como el labio y paladar fisurado. Métodos: se realizó una revisión sistemática de la literatura en las bases bibliográficas PubMed, EMBASE, Web of Science y Cochrane con los términos booleanos palate, development, palatogenesis, matrix metalloproteinases (MMPs), tissue inhibitors of metalloproteinases (TIMPs), extracellular matrix, y cleft and lip palate, para clasificar los diferentes estudios relacionados con la presencia de MMP y TIMP en el paladar y los métodos utilizados para detectar su expresión en el paladar entre 1997 y 2014. Resultados y conclusiones: los estudios en modelos experimentales evidencian la participación de MMP-2, MMP-3, MMP-9, MMP-13, MMP-25, ADAMTS9, y ADAMTS20 y TIMP en diferentes estadios del desarrollo palatino en murinos. Por el contrario, los reportados en humanos son escasos y se han relacionado con polimorfismos en MMP-3 y MMP-25 asociados a presencia de labio y paladar fisurado no sindrómico. 

 

Background: Palate development is a complex event that requires the synthesis and degradation of various components of the extracellular matrix, such as collagen type I, II and III, fibronectin, and hyaluronic acid. Matrix metalloproteinases (MMPs) are a family of proteases responsible for tissue remodeling and its activity is regulated by their endogenous inhibitors (TIMPs). Several studies demonstrate the role of MMPs and TIMPs in palatogenesis and their relationship with cleft and lip palate. Purpose: To classify existing studies with experimental and human models that show the role of metalloproteinases and their inhibitors in palatal development and its relationship to diseases such as cleft lip and palate. Methods: This systematic literature was carried out in the PubMed, EMBASE, Web of Science, and Cochrane databases. The search included Boolean descriptors like palate, development, palatogenesis, matrix metalloproteinases (MMPs), tissue of metalloproteinases (TIMPs), extracellular matrix, and cleft lip and palate, in order to classify the studies related to the presence of MMPs and TIMPs in palate and the methods used to detect their expression between the years of 1997 and 2014. Results and Conclusion: Studies in animal models demonstrate the expression of MMP-2, MMP-3, MMP-9, MMP-13, MMP-25, ADAMTS9, ADAMTS20, and TIMPs in different stages of development in murine palate. By contrast, studies reported in humans are scarce and have been associated with polymorphisms of MMP-3 and MMP -25 associated with the presence of non-syndromic lip and cleft palate.

Keywords
References
1. Gómez de Ferraris M, Campos Muñoz A. Histología y embriología bucodental. 2ª ed. Madrid: Panamericana; 2002.
2. Cuevo R, Covarrubias L. Death is the major fate of medial edge epithelial cells and the cause of basal lamina degradation during palatogénesis. Development [internet]. 2004; 131(1): 15-24. Disponible en: http://dev.biologists.org/content/131/1/15.long.
3. Montenegro MA, Rojas M. Aspectos moleculares en la formación de la cara y del paladar. Int J Morphol [internet]. 2005; 23(2): 185-94. Disponible en: http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-95022005000200014.
4. Chevenix-Trench G, Jones K, Green AC, Duffy DL, Martin NG. Cleft lip with or without cleft palate: associations with transforming growth factor alpha and retinoic acid receptor loci. Am J Hum Genet [internet]. 1992; 51(6): 1377-85. Disponible en: http://keppel.qimr.edu.au/contents/p/staff/CV123.pdf.
5. Sasaki Y, Taya Y, Saito K, Fujita K, Aoba T, Fujiwara T. Molecular contribution to cleft palate production in cleft lip mice. Congenit Anom (Kyoto) [internet]. 2014; 54(2): 94-9. Disponible en: http://onlinelibrary.wiley.com/doi/10.1111/cga.12038/full.
6. Nakazawa M, Matsunaga K, Asamura S, Kusuhara H, Isogai N, Muragaki Y. Molecular mechanisms of cleft lip formation in CL/Fr mice. Scand J Plast Reconstr Surg Hand Surg. 2008; 42(5): 225-32.
7. Diewert VM, Wang KY. Recent advances in primary palate and midface morphogenesis research. Crit Rev Oral Biol Med. 1992; 4(1): 111-30.
8. Bienengraber V, Malek F, Fanghanel J, Kundt G. Disturbances of palatogenesis and their prophylaxis in animal experiments. Ann Ant. 1999; 181(1): 111-5.
9. Feguson MV. Palatal shelf elevation in the Wistar rat fetus. J Anat. 1978; 125(Pt3): 555-77.
10. Zeiler KB, Weinstein S, Gibson RD. A study of the morphology and the time of closure of the palate in the albino rat. Arch Oral Biol. 1964; 9: 545-54.
11. Schupbach PM, Chamberlain JG, Schroeder HE. Development of the secondary palate in the rat: a scanning electron microscopic study. J Craniofac Genet Dev Biol. 1983; 3(2): 159-77.
12. Bush JO, Jiang R. Palatogenesis: morphogenetic and molecular mechanisms of secondary palate development. Development. 2012; 139(2): 231-43.
13. Asling CW, Nelson MM, Dougherty HD, Wright HV, Evans HM. The development of cleft palate resulting from maternal pterylglutamic (folic) acid deficiency during the latter half of gestation in rats. Surg Gynecol Obstet. 1960; 111: 19-28.
14. Coleman R. Development of the rat palate. Anat Rec. 1965; 151(2): 107-17.
15. Parada C, Han D, Chai Y. Molecular and cellular regulatory mechanisms of tonge myogenesis. J Dent Res [internet]. 2012; 91(6): 528-35. Disponible en: http://jdr.sagepub.com/content/91/6/528.short
16. Walker BE. Correlation of the embryonic movement with palate closure in mice. Teratol. 1969; 2(3): 191-7.
17. Ross RB, Lindsay WK. The cervical vertebrae as a factor in etiology of cleft palate. Cleft Palate J. 1965; 36: 274-81.
18. Walker B, Fraser F. Closure of the secondary palate in three strains of mice. J Embryol Exp Morph. 1956; 4(2): 176-89.
19. Hassel JR, Orkin RW. Synthesis and distribution of collagen in the rat palate during shelf elevation. Dev Biol. 1976; 49(1): 80-8.
20. Keith DA. The role of the connective tissue in craniofacial development, function and disease. Int J Oral Surg. 1980; 9(5): 321-42.
21. Moss ML, Salentijn L. The primary role of functional matrices in facial growth. Am J Orthod. 1969; 55(6): 566-77.
22. Turley EA, Hollenberg MD, Pratt RM. Effect of epidermal grownth factor/urogastrone on glycosaminoglycan synthesis and accumulation in vitro in the developing mouse palate. Differentiation. 1985; 28(3): 279-85.
23. Morris-Wiman J, Du Y, Brinkley L. Ocurrance and temporal variation in matrix metalloproteinases and their inhibitors during murine secondary palate morphogenesis. J Craniofac Genet Dev Biol. 1999; 19(4): 201-12.
24. Morris-Wiman J, Burch H, Basco E. Temporospatial distribution of matrix metalloproteinase and tissue inhibitors of the matrix metalloproteinases during murine secondary palate morphogenesis. Anat Embryol (Berl) [internet]. 2000; 202(2): 129-41. Disponible en: http://link.springer.com/article/10.1007/s004290000098.
25. Mansell JP, Kerringan J, McGill J, Bailey J, TeKoppele J, Sandy JR. Temporal changes in collagen composition and metabolism during rodent palatogenesis. Mech Ageing Dev. 2000; 119(1-2): 49-62.
26. Evrosimovska B, Velockovski B, DImova C, Veleska-Stefkovska D. Matrix metalloproteinases (with accent to collagenases). J. Cell Anim Biol. 2011; 5(7): 113-20.
27. Basbaum CB, Werb Z. Focalized proteolysis: spatial and temporal regulation of extracellular matrix degradation at the cell surface. Curr Opin Cell Biol. 1996; 8(5): 731-8.
28. Werb Z, Chin JR. Extracellular matrix remodeling during morphogenesis. Ann NY Acad Sci. 1998; 857: 110-8.
29. Denhardt DT, Feng B, Edwards DR, Cocuzzi ET, Malyankar UM. Tissue inhibitor of metalloproteinases (TIMP, aka EPA): structure, control of expression and biological functions. Pharmacol Ther. 1993; 59(3): 329-41.
30. Ortega N, Wang K, Ferrara N, Werb Z, Vu TH. Complementary interplay between matrix metalloproteinase-9, vascular endothelial growth factor and osteoclast function drives endochondral bone formation. Dis Model Mech. 2010; 3(3-4): 224-35.
31. Woessner JF, Woessner AJBDRF. 134-Matrilysin. handbook of the proteolytic enzymes. 2nd ed. London: Academic Press; 2004. pp. 532-7.
32. Malemud CJ. Matrix metalloproteinases (MMPs) in health and disease: an overview. Front Biosci. 2006; 11: 1696-701.
33. Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemestry. Circ Res. 2003; 92(8): 827-39.
34. Jones GC, Riley GP. ADAMTS proteinases: a multi-domain, multi-functional family with roles in extracellular matrix turnover and arthritis. Arthritis Res Ther. 2005; 7(4): 160-9.
35. Woessner JF, Jr. Matrix metalloproteinase inhibition. From the Jurassic to the third millennium. Ann N Y Acad Sci. 1999; 878: 388-403.
36. Iamaroon A, Wallon UM, Overall CM, Diewert VM. Expression of 72-kDa gelatinase (matrix metalloproteinase-2) in the developing mouse craniofacial complex. Arch Oral Biol. 1996; 41(12): 1109-19.
37. Blavier L, Lazaryev A, Groffen J, Heisterkamp N, DeClerck YA, Kaartinen V. TGF-beta 3-induced palatogenesis requires matrix metalloproteinases. Mol Biol Cell [internet]. 2001; 12(5): 1457-66. Disponible en: http://www.molbiolcell.org/content/12/5/1457.long.
38. Brown NL, Yarrama SJ, Mansell JP, Sandy JR. Matrix metalloproteinases have a role in palatogenesis. J Dent Res. 2002; 81(12): 826-30.
39. de Oliveira Demarchi AC, Zambuzzi WF, Paiva KB, da Silva-Valenzuela M, Nunes FD, de Cassia Savio Figueira R, Sasahara RM, Demasi MA, Winnischofer SM, Sogayar MC, Granjeiro JM. Development of secondary palate requires strict regulation of ECM remodeling: sequential distribution of RECK, MMP-2, MMP-3, and MMP-9. Cell Tissue Res. 2010; 340(1): 61-9.
40. Gkantidis N, Blumer S, Katsaros C, Graf D, Chiquet M. Site-specific expression of gelatinolytic activity during morphogenesis of the secondary palate in the mouse embryo. PloS One. 2012; 7(10): e47762.
41. Hirata A, Katayama K, Tsuji T, Natsume N, Sugahara T, Koga Y, Takano K, Otsuki Y, Nakamura H. Heparanase localization during palatogenesis in mice. Biomed Res Int. 2013; 2013: 760236.
42. Brown GD, Nazarali AJ. Matrix metalloproteinase-25 has a functional role in mouse secondary palate development and is a downstream target of TGF-beta3. BMC Dev Biol. 2010; 10: 93.
43. Enomoto H, Nelson CM, Somerville RP, Mielke K, Dixon LJ, Powell K, Apte SS. Cooperation of the two ADAMTS metalloproteases in closure of the mouse palate identifies a requirement for versican proteolysis in regulating palatal mesenchyme proliferation. Development. 2010; 137(23): 4029-38.
44. Blanton SH, Bertin T, Serna ME, Stal S, Mulliken JB. Association of chromosomal regions 3p21.2, 10p13 and 16p13.3 with nonsyndromic cleft lip and palate. Am J Med Genet A. 2004; 125A(1): 23-7.
45. Letra A, da Silva RA, Menezes R, Souza AP, de Almeida AL, Sogayar MC, Granjeiro JM. Studies with MMP9 gene promoter polymorphism and nonsyndromic cleft lip and palate. Am J Med Genet A. 2007; 143(1): 89-91.
46. Letra A, Silva RA, Menezes R, Astolfi CM, Shinohara A, de Souza AP, Granjeiro JM. MMP gene polymorphisms as contributors for clef lip/palate : association with MMP3 but not MMP1. Arch Oral Biol. 2007; 52(10): 954-60.
47. Letra A, Silva RM, Motta LG, Blanton SH, Hecht JT, Granjeirol JM, Vieira AR. Association of MMP3 and TIMP2 promoter polymorphisms with nonsyndromic oral clefts. Res A Clin Mol Teratol. 2012; 94(7): 540-8
48. Bueno DF, Sunaga DY, Kobayashi GS, Aguena M, Raposo-Amaral CE, Masotti C, Cruz LA, Pearson PL, Passos-Bueno MR. Human stem cell cultures from cleft lip/palate patients show enrichment of transcripts involved in extracellular matrix modeling by comparison to controls. Stem Cell Rev. 2011; 7(2): 446-57.
49. Smane L, Pilmane M, Akota I. Apoptosis and MMP-2, TIMP-2 expression in cleft lip and palate. Stomatologija. 2013; 15(4): 129-34.
Cómo citar
Cuéllar Rivas, E., Ortiz Salazar, M. A., & Villavicencio Flórez, J. (2015). Expresión de metaloproteinasas en el proceso de palatogénesis: revisión sistemática de la literatura / Expression of Metalloproteinases in Palate Development: Systematic Literature Review. Universitas Odontologica, 33(71), 29–40. https://doi.org/10.11144/Javeriana.uo33-71.empp
Sección
Dossier Temático