Computer-aided design, synthesis, and characterization of molecular hybrids of dihydropyrazoles, aminopyrimidines, and thiazolidin-4-ones as potential inhibitors of the penicillin-binding protein 3 (PBP-3) of Escherichia coli
PDF
Supp. 1

Keywords

PBP-3 inhibitors
hybrid pharmacophores
in silico screening
dihydropyrazoles
pyrimidin-2-amines
thiazolidin-4-ones

How to Cite

Computer-aided design, synthesis, and characterization of molecular hybrids of dihydropyrazoles, aminopyrimidines, and thiazolidin-4-ones as potential inhibitors of the penicillin-binding protein 3 (PBP-3) of Escherichia coli. (2021). Universitas Scientiarum, 26(1), 17-35. https://doi.org/10.11144/Javeriana.SC26-1.cads
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar

Abstract

A computer-assisted approach was used to model and study privileged heterocyclic scaffolds containing dihydropyrazole, pyrimidin-2-amine, and thiazolidin-4-one moieties (hybrid pharmacophores) to obtain novel and promising antimicrobial prototype molecules. Main bioavailability descriptors were determined in order to assess the drug-likeness of the designed compounds and to pre-filter eleven compounds exhibiting the best profiles, thus passing to molecular docking study against a key penicillin-binding protein type-3 from enterotoxygenic E. coli. Seven structures were chosen by their
energies of affinity and docking interactions with key residues in the active site of the receptor. Seven compounds with the highest docking scores belonging to the series of chalcones, dihydropyrazoles, aminopyrimidines, and thiazolidin-4-ones were prepared via condensation or cyclocondensation reactions. The structural elucidation of the final products was carried out by infrared spectra analysis and NMR experiments. Such molecular hybrids considered as potential hits in the search for new antibacterial compounds will be tested in vitro in further studies.

PDF
Supp. 1

Cuellar LE, Infecciones en huéspedes inmunocomprometidos. Revista Medica Herediana, 24: 156-161, 2013.

Bourgeois AL, Wierzba TF, Walker RI. (2016). Status of vaccine research and development for enterotoxigenic Escherichia coli. Vaccine. 34 (26): 2880–2886, 2016.

doi: 10.1016/j.vaccine.2016.02.076

Gupta SK, Keck J, Ram PK, Crump JA, Miller MA, Mintz ED. Analysis of Data Gaps Pertaining to Enterotoxigenic Escherichia coli Infections in Low and Medium Human Development Index Countries, 1984-2005. Epidemiology and Infection. 136 (6): 721–738, 2008.

doi: 10.1017/S095026880700934X

Kotloff KL, Nataro JP, Blackwelder WC, et al. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): a prospective, case-control study. The Lancet. 382 (9888): 209–222, 2013.

doi: 10.1016/s0140-6736(13)60844-2

Ochoa TJ, Contreras CA. Enteropathogenic Escherichia coli infection in children. Current Opinion in Infectious Diseases. 24: 478–483, 2011.

doi: 10.1097/QCO.0b013e32834a8b8b

Contreras CA, Ochoa TJ, Lacher DW, et al. Allelic variability of critical virulence genes (eae, bfpA and perA) in typical and atypical enteropathogenic Escherichia coli in Peruvian children. J. Med Microbiol. 59: 25–31, 2010.

doi: 10.1099/jmm.0.013706-0

World Health Organization. (2016). Antibiotic resistance. Fact sheet.

Vardanyan R, Hruby V. Synthesis of Best-Seller Drug. University of Arizona, Academic Press, Tucson, AZ, pp 847, 2016.

Reguero M, Barreto E, Jimenez F. Relacion estructura quimica actividad biológica. Una revisión retrospectiva. Revista Colombiana de de Ciencias Quimico-farmaceuticas, 17: 81-84, 1989.

doi: 10.15446/rcciquifa

Amábile-Cuevas C. In many ways, the fight against antibiotic resistance is already lost; preventing bacterial disease requires thoughtful new approaches. Am. Sci, 91: 138-149, 2003.

Marovac J. Investigación y desarrollo de nuevos medicamentos: de la molécula al farmaco. Revista médica de Chile, 129 (1): 99-106, 2001.

doi: 10.4067/S0034-98872001000100015

Escalona J, Carrasco R, Padrón J. Introducción al diseño racional de fármacos. Editorial Universitaria, Ciudad de la Habana, Cuba, pp 12-17, 2008.

Sainsbury S, Bird L, Rao V, Shepherd S, Stuart D, Hunter W, Ren J. Crystal Structures of Penicillin-Binding Protein-3 from Pseudomonas aeruginosa: Comparison of Native and Antibiotic-Bound Forms. J. Mol. Biol. 405: 173-184, 2011.

doi: 10.1016/j.jmb.2010.10.024

Kong KF, Schneper L, Mathee K. Beta-lactam antibiotics: from antibiosis to resistance and bacteriology. APMIS : acta pathologica, microbiologica, et immunologica Scandinavica, 118(1): 1–36, 2010.

doi: 10.1111/j.1600-0463.2009.02563.x

Protein Data Bank (PDB). Available at: https://www.rcsb.org/structure/4BJP. [Accessed Nobember 6, 2020].

Sauvage E, Derouaux A, Fraipont C, Joris MHR. et al. Crystal Structure of Penicillin-Binding Protein 3 (PBP3) from Escherichia coli. PLoS ONE. 9(5): e98042, 2014.

doi: 10.1371/journal.pone.0098042

Ghuysen JM. Serine beta-lactamases and penicillin-binding proteins. Annu. Rev. Microbiol. 45: 37-67, 1991.

doi: 10.1146/annurev.mi.45.100191.000345

Farghaly A, Esmail S, Abdel-Zaher A, Bdel-Hafez A, El-Kashef H. Bioorg. Med. Chem. 22: 2166, 2014.

doi: 10.1016/j.bmc.2014.02.019

Salum L, Mascarello A, Canevarolo R, Altei W, Laranjeira A, Neuenfeldt P, Stumpf T. Eur. J. Med. Chem. 96: 504, 2015.

doi: 10.1016/j.ejmech.2015.02.041

Hammad SG, El-Gazzar MG, Abutaleb NS, Li D, Ramming I, Shekhar A, Abdel-Halim M, Elrazaz EZ, Seleem MN, Bilitewski U, Abouzid KAM, El-Hossary EM. Bioorg. Chem. 95: 103517, 2020.

doi: 10.1016/j.bioorg.2019.103517

Abo-Ashour MF, Eldehna WM, George RF, Abdel-Aziz MM, Elaasser MM, Gawad NMA, Gupta A, Bhakta S, Abou-Seri SM. Eur. J. Med. Chem. 160: 49-60, 2018.

Rashid M, Husain A, Shaharyar M, Mishra R, Hussain A, Afzal O. Eur. J. Med. Chem. 83: 630, 2014.

doi: 10.1016/j.ejmech.2014.06.033

Kumar D, Singh SP. Heterocycles, 63(1): 145, 2004.

doi: 10.3987/REV-03-569

Khunt RC, Khedkar VM, Chawda RS, Chauhan NA, Parikh AR, Coutinho EC. Bioorg. Med. Chem. Lett. 22: 666-678, 2012.

doi: 10.1016/j.bmcl.2011.10.059

Shaquiquzzaman M, Khan S, Amir M, Alam M. Saudi. Pharm. J. 20: 149-154, 2012.

doi: 10.1016/j.jsps.2011.09.007

Premnath D, Indiraleka M. Asian. J. Med. Anal. Chem. 1: 27-32, 2014.

Taj T, Kamble R, Gireesh T, Hunnur R, Margankop S. Eur. J. Med. Chem. 46: 4366-73,2011.

doi: 10.1016/j.ejmech.2011.07.007

Kumar H, Saini D, Jain S, Jain N. Eur. J. Med. Chem. 70: 248-258, 2013.

doi: 10.1016/j.ejmech.2013.10.004

Spring D. Diversity-oriented synthesis; a challenge for synthetic chemists. Org. Biomol. Chem. 1: 3867-3870, 2003.

doi: 10.1039/B310752N

Moreno-Díaz H, Villalobos-Molina R, Ortiz-Andrade R, Díaz-Coutiño D, Medina-Franco JL, Webster SP, et al. Bioorg. Med. Chem. Lett. 18: 2871–2877, 2008.

doi: 10.1016/j.bmcl.2008.03.086

Navarrete-Vázquez G, Moreno-Diaz H, Aguirre-Crespo F, León-Rivera I, Villalobos-Molina R, Muñoz-Muñiz O, et al. Bioorg. Med. Chem. Lett. 16: 4169-4173, 2006.

doi: 10.1016/j.bmcl.2006.05.082

Cheng F, Li W, Zhou Y, Shen J, Wu Z, Liu G, et al. admetSAR: A Comprehensive Source and Free Tool for Assessment. J. Chem. Inf. Model. 52: 3099-3105, 2012.

doi: 10.1021/ci300367a

Sashidhara KV, Rosaiah JN, Kumar A. Synth. Commun. 39: 13, 2288-2296, 2009.

doi: 10.1080/00397910802654724

Hodge H, Sterner J. Am. Ind. Hyg. Assoc. Q. 10: 94-97, 1949.

Durst HD, Gokel GW. Química Orgánica Experimental. Reverté S.A., Barcelona, España, pp 325-327, 1985.

Jawale DV, Pratap UR, Bhosale MR, Mane RA. J. Het. Chem. 53: 1626-1630, 2016.

doi: 10.1002/jhet.673

Qiya Z, Hong XH, Suhui W, Shuajiang T, Liangce R. Synth. Commun. 39: 516-522, 2009.

doi: 10.1080/00397910802399932

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2021 Universitas Scientiarum