Abstract
A series of 4,6-diaryl-2-aminopyrimidines was synthesized using a Biginelli-type three-component strategy optimized in conventional-heated reflux, in comparison to a non-conventional approach using monomode microwave reactor. Conventional heating protocols involved the use of organic solvents and general base catalysis, while microwave-assisted approach where performed following experimental protocols framed within the principles of green chemistry, by using aqueous medium and CaCl2 as catalyst. The study revealed that although conventional heating led to the main product in higher yields but at longer reaction times, the microwave strategy was accomplished in substantially shorter reaction times, with yields ranging from acceptable to good and efficiencies comparable to conventional heating methodologies.
Feng D, Zuo X, Jing L, Chen CH, Olotu FA, Lin H, Soliman M, De Clerq E, Pannecouque C, Lee KH, Kang D, Liu X, Zhan P. Design Synthesis and evaluation of “dual-site”-binding diarylpyrimidines targeting both NNIBP and NNRTI adjacent site of the HIV-1 reverse
transcriptase, European Journal of Medicinal Chemistry, 211: 113063-113078, 2011.
doi: 10.1016/j.ejmech.2020.113063
Schultz DC, Johnson RM, Ayyanathan K, Miller J, Whig K, Kamalia B, Dittmar M, Weston S, Hammond HL, Dillen C, Ardanuy J, Taylor L, Lee JS, Li M, Lee E, Shoffler C, Petucci C, Constant S, Ferrer M, Thais CA, Frieman MB, Cherry S. Pyrimidine inhibitors synergize
with nucleoside analogues to block SARS-CoV-2, Nature, 604: 134-140, 2022.
doi: 10.1038/s41586-022-04482-x
Dragún M, Novotny RB, Beranek J. Antiviral activities of pyrimidine nucleoside analogues: Some structure—activity relationships, Acta Virologica, 34(4): 321-329, 1990. PMID: 1981442.
Sudha-Rani K, Lakshmi-Durga J, Srilatha M, Sravani M, Sunand V, Vinod B. Synthesis, characterization, anthelmintic and in silico evaluation of 4,6-disubstituted pyrimidine-2-one derivatives, Der Pharma Chemica, 10(8): 57-61, 2018. Corpus ID: 212470803.
Takagi K, Tanaka M, Morita H, Ogura K, Ishii K, Nakata N, Ozeki M. Synthesis and analgesic activity of 4-amino-1,2-dihidro-5-(2-hidroxyphenyl)-3H-pyrazol-3-ones and 5-amino-6-(2- hidroxyphenyl)pyrimidin-4(3H)-ones, European Journal of Medicinal Chemistry, 22(3):239-242, 1987.
doi: 10.1016/0223-5234(87)90055-9
Bayramoglu D, Kurtay G, Güllü M. Ultrasound assisted rapid synthesis of of 2-aminopyrimidine and barbituric acid derivatives, Synthetic Communications, 50(5): 649-658,2020.
doi: 10.1080/00397911.2019.1705349
Ma L, Li S, Zheng H, Chen J, Lin L, Ye X, Chen Z, Xu Q, Chen T, Yang J, Qiu N, Wang G, Peng A, Ding Y, Wei Y, Chen L. Synthesis and biological activity of novel barbituric acid and thiobarbituric acid derivatives against non-alcoholic fatty liver disease, European
Journal of Medicinal Chemistry, 46(6): 2003-2010, 2011.
doi: 10.1016/j.ejmech.2011.02.033
Löffler M, Carrey EA, Zameitat E. New perspectives on the roles of pyrimidines in the central nervous system, Nucleosides, nucleotides and nucleic acids, 37(5): 290-306, 2018.
doi: 10.1080/15257770.2018.1453076
Sharma V, Chitranshi N, Agarwal AK. Significance and biological importance of pyrimidine in the microbial world, International Journal of Medicinal Chemistry, 2014: 202784, 2014. PMID: 25383216.
doi: 10.1155%2F2014%2F202784
Pathak V, Maurya H, Sharma S, Srivastava KK, Gupta A. Synthesis and biological evaluation of substituted 4,6-diarylpyrimidines and 3,5-diphenyl-4,5-dihydro-1H-pyrazoles as antitubercular agents, Bioorganic & Medicinal Chemistry Letters, 13(1): 2892-2896, 2014.
doi: 10.1016/j.bmcl.2014.04.094.
Orozco-Lopez F, Guerrero-Villalobos LR, Cuervo-Prado PA. Computer-aided design, synthesis and characterization of molecular hybrids of dihydropyrazoles, aminopyrimidines, and thiazolidin-4-ones as potential inhibitors of the penicillin-binding protein 3 (PBP-3) of Escherichia coli. Universitas Scientiarum, 26(1): 17-35.
doi: 10.11144/Javeriana.SC26-1.cads
Chiacchio MA, Iannazzo D, Romeo R, Giofré SV, Legnani L. Pyridine and pyrimidine derivatives as privileged scaffolds in biologically active agents, Current Medicinal Chemistry, 26(40): 7166-7195, 2019. doi: 10.2174/0929867325666180904125400
Dinastiya EM, Verbitskiy EV, Gadirov RM, Samsonova LG, Degtyarenko KM, Grigoryev DV, Kurtcevich AE, Solodova TA, Tel´minov EN, Rusinov GL, Chupakhin ON, Charushin VN. Investigation of 4,6-di(hetero)aryl-substituted pyrimidines as emitters for non-doped
OLED and laser dyes, Journal of Photochemistry and Photobiology A: Chemistry, 408(1):113089, 2021.
doi: 10.1016/j.jphotochem.2020.113089
Fatahala SS. Retrosynthesis analysis; a way to design a retrosynthesis map for pyridine and pyrimidine ring. Annals of Advances in Chemistry, 1(1): 57-60, 2017.
doi: 10.29328/journal.aac.1001007
Kappe CO. A reexamination of the mechanism of the Biginelli dihydropyrimidine synthesis. Support for an N-acyliminium ion intermediate. Journal of Organic Chemistry, 62(21):7201-7204, 1997.
doi: 10.1021/jo971010u
Biginelli P, Über Aldehyduramide des Acetessigäthers. Berichte der deutschen chemischen Gesselschaft, 24(1): 1317-1319, 1891.
doi: 10.1002/cber.189102401228
Heravi M, Zadsirjan V, Recent Advances in Applications of Name Reactions in Multicomponent Reactions - Chapter 3, Elsevier, 2020, 139-268.
doi: 10.1016/B978-0-12-818584-1.00003-3
Müller TJJ, Multicomponent reactions. Beilstein Journal of Organic Chemistry,2011, 7, 960–961,
doi: 10.3762/bjoc.7.107
Dömling A, Ugi I, Multicomponent Reactions with Isocyanides. Angewandte Chemie International Edition, 2000, 39, 3168.
doi: 10.1002/1521-3773(20000915)39:18
Dömling A, Multicomponent Reactions - Superior Chemistry Technology For The New Millennium. Organic Chemistry Highlights, 2004, April 5.
doi: 2005/05April.shtm
Bassyouni F, Abu-Bakr S, Rehim M. A. Evolution of microwave irradiation and its application in green chemistry and biosciences. Research on Chemical Intermediates, 2012, 38, 283–322.
doi: 10.1007/s11164-011-0348-1
Ravichandran S, Karthikeyan E. Microwave Synthesis - A Potential Tool for Green Chemistry. International Journal of ChemTech Research, 2011, 3(1), 466-470.
Heravi MM, Ghavidel M, Heidari B. Microwave-Assisted Biginelli Reaction: An Old Reaction, a New Perspective. Current Organic Synthesis, 2016, 13, 569-600.
doi: 10.2174/1570179413666151218202307
Pasunooti KK, Chai H, Jensen CN, Gorityala BK, Wang S, Liu XW. A microwave-assisted, copper-catalyzed three-component synthesis of dihydropyrimidinones under mild conditions. Tetrahedron Letters. 2011, 52, 80-84.
doi: 10.1016/j.tetlet.2010.10.150
Liang B, Wang X, Wang J. X, Dua Z. New three-component cyclo- condensation reaction: microwave assisted one-pot synthesis of 5- unsubstituted-3,4-dihydropyrimidin-2(1H)-ones under solvent-free conditions, Tetrahedron. 2007, 63, 1981-1986.
doi: 10.1016/j.tet.2006.12.062
Anastas P, Eghbali N. Green chemistry: Principles and practice. Chemical Society Reviews, 2010, 39, 301-312.
doi: 10.1039/B918763B
Wanisa AM, Amna QA, Asma E. Green chemistry: Principles, applications and disadvantages, Chemical Methodologies, 4: 408-423, 2020.
doi: article_101213.html
Chen TL, Kim H, Pan SY, Tseng PC, Lin YP, Chiang PC. Implementation of green chemistry principles in circular economy system towards sustainable development goals: Challenges and perspectives, Science of The Total Environment, 716: 136998, 2020.
doi: 10.1016/j.scitotenv.2020.136998
Clark JH, English JP, Winnek, PS, Marson HW, Cole QP, Clapp JW. Studies in chemotherapy XII. Some sulphanilamidoheterocycles, Journal of the American Chemical Society, 68(1):96-99, 1946.
doi: 10.1021/ja01205a031
Kangarajan V, Gopalakrishnan M. Synthesis and in vitro microbiological evaluation of an array of biolabile 2-morpholino-N-(4,6-diarylpyrimidin-2-yl)acetamides, European Journal of Medicinal Chemistry, 45(4): 1583-1589, 2010.
doi: 10.1016/j.ejmech.2009.12.068
Thanh ND, Thanh-Mai NT, Synthesis of N-tetra-O-acetyl-β-D-glucopyranosyl-N´-(4,6´- diarylpyrimidin-2´-yl)thioureas. Carbohydrate Research, 344(17): 2399-2405, 2009. Journal of American Chemical Society, 124(4): 536–537, 2002.
doi: 10.1021/ja0172181
doi: 10.1016/j.carres.2009.09.002
Miura K, Nakagawa T, Hosomi A, Lewis Base-Promoted Aldol Reaction of Dimethylsilyl Enolates in Aqueous Dimethylformamide: Use of Calcium Chloride as a Lewis Base Catalyst.
Kulkarni PS, Calcium Chloride/HCl An Efficient Co-catalytic System For Synthesis Xanthene Under Microwave Condition, in Proceedings of the 20th International Electronic Conference on Synthetic Organic Chemistry, 1–30 November 2016, MDPI: Basel, Switzerland.
doi: 10.3390/ecsoc-20-c001
Hongqiang L, Jian X, Optimization of microwave-assisted calcium chloride pretreatment of corn stover, Bioresource Technology, 127: 112-118, 2013.
doi: 10.1016/j.biortech.2012.09.114
International Chemical Safety Cards (ICSCs). ICSC database.
https://www.ilo.org/dyn/icsc/showcard.display?p_version=2&p_card_id=0894
Amresco. Safety Data Sheet. Guanidine Hydrochloride.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright (c) 2023 Christian A. Becerra-Rivas, Paola A. Cuervo-Prado, Fabian Orozco-Lopez