A Comparative Study of Microwave-Assisted and Conventional Heating Approaches for the Multicomponent Synthesis of 4,6-Diarylpyrimidines
PDF

Keywords

4,6-diarylaminopyrimidines; microwave-irradiated synthesis; monomode reactor; Biginelli-type reaction.

How to Cite

A Comparative Study of Microwave-Assisted and Conventional Heating Approaches for the Multicomponent Synthesis of 4,6-Diarylpyrimidines. (2023). Universitas Scientiarum, 28(3), 300-315. https://doi.org/10.11144/Javeriana.SC283.acso
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar

Abstract

A series of 4,6-diaryl-2-aminopyrimidines was synthesized using a Biginelli-type three-component strategy optimized in conventional-heated reflux, in comparison to a non-conventional approach using monomode microwave reactor. Conventional heating protocols involved the use of organic solvents and general base catalysis, while microwave-assisted approach where performed following experimental protocols framed within the principles of green chemistry, by using aqueous medium and CaCl2 as catalyst. The study revealed that although conventional heating led to the main product in higher yields but at longer reaction times, the microwave strategy was accomplished in substantially shorter reaction times, with yields ranging from acceptable to good and efficiencies comparable to conventional heating methodologies.

PDF

Feng D, Zuo X, Jing L, Chen CH, Olotu FA, Lin H, Soliman M, De Clerq E, Pannecouque C, Lee KH, Kang D, Liu X, Zhan P. Design Synthesis and evaluation of “dual-site”-binding diarylpyrimidines targeting both NNIBP and NNRTI adjacent site of the HIV-1 reverse

transcriptase, European Journal of Medicinal Chemistry, 211: 113063-113078, 2011.

doi: 10.1016/j.ejmech.2020.113063

Schultz DC, Johnson RM, Ayyanathan K, Miller J, Whig K, Kamalia B, Dittmar M, Weston S, Hammond HL, Dillen C, Ardanuy J, Taylor L, Lee JS, Li M, Lee E, Shoffler C, Petucci C, Constant S, Ferrer M, Thais CA, Frieman MB, Cherry S. Pyrimidine inhibitors synergize

with nucleoside analogues to block SARS-CoV-2, Nature, 604: 134-140, 2022.

doi: 10.1038/s41586-022-04482-x

Dragún M, Novotny RB, Beranek J. Antiviral activities of pyrimidine nucleoside analogues: Some structure—activity relationships, Acta Virologica, 34(4): 321-329, 1990. PMID: 1981442.

Sudha-Rani K, Lakshmi-Durga J, Srilatha M, Sravani M, Sunand V, Vinod B. Synthesis, characterization, anthelmintic and in silico evaluation of 4,6-disubstituted pyrimidine-2-one derivatives, Der Pharma Chemica, 10(8): 57-61, 2018. Corpus ID: 212470803.

Takagi K, Tanaka M, Morita H, Ogura K, Ishii K, Nakata N, Ozeki M. Synthesis and analgesic activity of 4-amino-1,2-dihidro-5-(2-hidroxyphenyl)-3H-pyrazol-3-ones and 5-amino-6-(2- hidroxyphenyl)pyrimidin-4(3H)-ones, European Journal of Medicinal Chemistry, 22(3):239-242, 1987.

doi: 10.1016/0223-5234(87)90055-9

Bayramoglu D, Kurtay G, Güllü M. Ultrasound assisted rapid synthesis of of 2-aminopyrimidine and barbituric acid derivatives, Synthetic Communications, 50(5): 649-658,2020.

doi: 10.1080/00397911.2019.1705349

Ma L, Li S, Zheng H, Chen J, Lin L, Ye X, Chen Z, Xu Q, Chen T, Yang J, Qiu N, Wang G, Peng A, Ding Y, Wei Y, Chen L. Synthesis and biological activity of novel barbituric acid and thiobarbituric acid derivatives against non-alcoholic fatty liver disease, European

Journal of Medicinal Chemistry, 46(6): 2003-2010, 2011.

doi: 10.1016/j.ejmech.2011.02.033

Löffler M, Carrey EA, Zameitat E. New perspectives on the roles of pyrimidines in the central nervous system, Nucleosides, nucleotides and nucleic acids, 37(5): 290-306, 2018.

doi: 10.1080/15257770.2018.1453076

Sharma V, Chitranshi N, Agarwal AK. Significance and biological importance of pyrimidine in the microbial world, International Journal of Medicinal Chemistry, 2014: 202784, 2014. PMID: 25383216.

doi: 10.1155%2F2014%2F202784

Pathak V, Maurya H, Sharma S, Srivastava KK, Gupta A. Synthesis and biological evaluation of substituted 4,6-diarylpyrimidines and 3,5-diphenyl-4,5-dihydro-1H-pyrazoles as antitubercular agents, Bioorganic & Medicinal Chemistry Letters, 13(1): 2892-2896, 2014.

doi: 10.1016/j.bmcl.2014.04.094.

Orozco-Lopez F, Guerrero-Villalobos LR, Cuervo-Prado PA. Computer-aided design, synthesis and characterization of molecular hybrids of dihydropyrazoles, aminopyrimidines, and thiazolidin-4-ones as potential inhibitors of the penicillin-binding protein 3 (PBP-3) of Escherichia coli. Universitas Scientiarum, 26(1): 17-35.

doi: 10.11144/Javeriana.SC26-1.cads

Chiacchio MA, Iannazzo D, Romeo R, Giofré SV, Legnani L. Pyridine and pyrimidine derivatives as privileged scaffolds in biologically active agents, Current Medicinal Chemistry, 26(40): 7166-7195, 2019. doi: 10.2174/0929867325666180904125400

Dinastiya EM, Verbitskiy EV, Gadirov RM, Samsonova LG, Degtyarenko KM, Grigoryev DV, Kurtcevich AE, Solodova TA, Tel´minov EN, Rusinov GL, Chupakhin ON, Charushin VN. Investigation of 4,6-di(hetero)aryl-substituted pyrimidines as emitters for non-doped

OLED and laser dyes, Journal of Photochemistry and Photobiology A: Chemistry, 408(1):113089, 2021.

doi: 10.1016/j.jphotochem.2020.113089

Fatahala SS. Retrosynthesis analysis; a way to design a retrosynthesis map for pyridine and pyrimidine ring. Annals of Advances in Chemistry, 1(1): 57-60, 2017.

doi: 10.29328/journal.aac.1001007

Kappe CO. A reexamination of the mechanism of the Biginelli dihydropyrimidine synthesis. Support for an N-acyliminium ion intermediate. Journal of Organic Chemistry, 62(21):7201-7204, 1997.

doi: 10.1021/jo971010u

Biginelli P, Über Aldehyduramide des Acetessigäthers. Berichte der deutschen chemischen Gesselschaft, 24(1): 1317-1319, 1891.

doi: 10.1002/cber.189102401228

Heravi M, Zadsirjan V, Recent Advances in Applications of Name Reactions in Multicomponent Reactions - Chapter 3, Elsevier, 2020, 139-268.

doi: 10.1016/B978-0-12-818584-1.00003-3

Müller TJJ, Multicomponent reactions. Beilstein Journal of Organic Chemistry,2011, 7, 960–961,

doi: 10.3762/bjoc.7.107

Dömling A, Ugi I, Multicomponent Reactions with Isocyanides. Angewandte Chemie International Edition, 2000, 39, 3168.

doi: 10.1002/1521-3773(20000915)39:18

Dömling A, Multicomponent Reactions - Superior Chemistry Technology For The New Millennium. Organic Chemistry Highlights, 2004, April 5.

doi: 2005/05April.shtm

Bassyouni F, Abu-Bakr S, Rehim M. A. Evolution of microwave irradiation and its application in green chemistry and biosciences. Research on Chemical Intermediates, 2012, 38, 283–322.

doi: 10.1007/s11164-011-0348-1

Ravichandran S, Karthikeyan E. Microwave Synthesis - A Potential Tool for Green Chemistry. International Journal of ChemTech Research, 2011, 3(1), 466-470.

Heravi MM, Ghavidel M, Heidari B. Microwave-Assisted Biginelli Reaction: An Old Reaction, a New Perspective. Current Organic Synthesis, 2016, 13, 569-600.

doi: 10.2174/1570179413666151218202307

Pasunooti KK, Chai H, Jensen CN, Gorityala BK, Wang S, Liu XW. A microwave-assisted, copper-catalyzed three-component synthesis of dihydropyrimidinones under mild conditions. Tetrahedron Letters. 2011, 52, 80-84.

doi: 10.1016/j.tetlet.2010.10.150

Liang B, Wang X, Wang J. X, Dua Z. New three-component cyclo- condensation reaction: microwave assisted one-pot synthesis of 5- unsubstituted-3,4-dihydropyrimidin-2(1H)-ones under solvent-free conditions, Tetrahedron. 2007, 63, 1981-1986.

doi: 10.1016/j.tet.2006.12.062

Anastas P, Eghbali N. Green chemistry: Principles and practice. Chemical Society Reviews, 2010, 39, 301-312.

doi: 10.1039/B918763B

Wanisa AM, Amna QA, Asma E. Green chemistry: Principles, applications and disadvantages, Chemical Methodologies, 4: 408-423, 2020.

doi: article_101213.html

Chen TL, Kim H, Pan SY, Tseng PC, Lin YP, Chiang PC. Implementation of green chemistry principles in circular economy system towards sustainable development goals: Challenges and perspectives, Science of The Total Environment, 716: 136998, 2020.

doi: 10.1016/j.scitotenv.2020.136998

Clark JH, English JP, Winnek, PS, Marson HW, Cole QP, Clapp JW. Studies in chemotherapy XII. Some sulphanilamidoheterocycles, Journal of the American Chemical Society, 68(1):96-99, 1946.

doi: 10.1021/ja01205a031

Kangarajan V, Gopalakrishnan M. Synthesis and in vitro microbiological evaluation of an array of biolabile 2-morpholino-N-(4,6-diarylpyrimidin-2-yl)acetamides, European Journal of Medicinal Chemistry, 45(4): 1583-1589, 2010.

doi: 10.1016/j.ejmech.2009.12.068

Thanh ND, Thanh-Mai NT, Synthesis of N-tetra-O-acetyl-β-D-glucopyranosyl-N´-(4,6´- diarylpyrimidin-2´-yl)thioureas. Carbohydrate Research, 344(17): 2399-2405, 2009. Journal of American Chemical Society, 124(4): 536–537, 2002.

doi: 10.1021/ja0172181

doi: 10.1016/j.carres.2009.09.002

Miura K, Nakagawa T, Hosomi A, Lewis Base-Promoted Aldol Reaction of Dimethylsilyl Enolates in Aqueous Dimethylformamide: Use of Calcium Chloride as a Lewis Base Catalyst.

Kulkarni PS, Calcium Chloride/HCl An Efficient Co-catalytic System For Synthesis Xanthene Under Microwave Condition, in Proceedings of the 20th International Electronic Conference on Synthetic Organic Chemistry, 1–30 November 2016, MDPI: Basel, Switzerland.

doi: 10.3390/ecsoc-20-c001

Hongqiang L, Jian X, Optimization of microwave-assisted calcium chloride pretreatment of corn stover, Bioresource Technology, 127: 112-118, 2013.

doi: 10.1016/j.biortech.2012.09.114

International Chemical Safety Cards (ICSCs). ICSC database.

https://www.ilo.org/dyn/icsc/showcard.display?p_version=2&p_card_id=0894

Amresco. Safety Data Sheet. Guanidine Hydrochloride.

https://www.criver.com/sites/default/files/resources/doc_a/GuanidineHydrochlorideMaterialSafetyDataSheetMSDS.pdf

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2023 Christian A. Becerra-Rivas, Paola A. Cuervo-Prado, Fabian Orozco-Lopez