Published Oct 2, 2020



PLUMX
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar


Johanna Santamaría-Vanegas https://orcid.org/0000-0001-5345-6683

Laura C Rodríguez-Rey https://orcid.org/0000-0002-2310-3155

##plugins.themes.bootstrap3.article.details##

Abstract

The neotropical otter (Lontra longicaudis) is considered a flagship species for the conservation of the ecosystems in which it resides and is currently in a vulnerable state. As a conservation strategy for this species, rehabilitation, breeding, and reintroduction programs of captive individuals have been proposed. However, it is likely that the environment and feeding conditions in captivity result in gut microbial communities that differ from those in wild animals. Gut microbial communities have an important role in the physiological performance of an animal. To determine differences between gut microbial communities of otters in wild and captive living conditions, the structure and diversity of their gut bacterial communities were determined using 16S rDNA molecular markers. Total DNA was isolated from fecal samples of wild animals from the La Vieja River basin and from captive animals in the Cali Zoo. As expected, the gut bacterial communities of captive animals converged to a more similar structure, and their bacterial diversity was significantly lower than that found in wild animals.

Keywords

Gut bacterial community, Lontra longicaudis, PCR-DGGE molecular profile, wild and captive otters

References
[1] Gallo-Reynoso JP, Ramos-Rosas NN, Rangel-Aguilar Ó. Depredación de aves acuáticas por la nutria neotropical (Lontra longicaudis annectens), en el río Yaqui, Sonora, México. Revista Mexicana de Biodiversidad, 79: 275–279, 2008.
doi: 10.22201/ib.20078706e.2008.001.502

[2] Fundación Omacha, Ministerio de Ambiente y Desarrollo Sostenible. Plan de manejo para la conservación de las nutrias (Lontra longicaudis y Pteronura brasiliensis) en Colombia, (2016).
https://www.minambiente.g ov.co/imag es/BosquesBiodiversidadyServiciosEcosistemicos/pdf/Programas-para-la-gestion-de-fauna-y-flora/plan-manejoconservacion-nutrias-colombia-final.pdf

[3] Rodrigues L de A, Leuchtenberger C, Kasper CB, Junior OC, Fonseca da Silva VC. Avaliação do risco de extinção da lontra neotropical Lontra longicaudis (Olfers, 1818) no Brasil. Biodiversidade Brasileira, 3: 216-227, 2013.

[4] Rheingantz ML, Trinca CS. Lontra longicaudis. The IUCN Red List of Threatened Species 2015.3
doi: 10.2305/IUCN.UK.2015-2.RLTS.T12304A21937379.en

[5] Corporación Autónoma Regional del Valle del Cauca. Nutria de río: planes de manejo para 18 vertebrados amenazados del departamento del Valle del Cauca. 2007
https://www.researchg ate.net/profile/Isabel_Avila2/publication/293606223_Planes_De_Manejo_Para_18_
Vertebrados_Amenazados_Del_Departamento_Del_Valle_Del_Cauca/links/56f5b8b108ae7c1fda2eeb56/Planes-DeManejo-Para-18-Vertebrados-Amenazados-Del-DepartamentoDel-Valle-Del-Cauca.pdf

[6] Pacifici M, Santini L, Di Marco M, Baisero D, Francucci L, Grottolo Marasini G, Rondinini C. Generation length for mammals. Nature Conservation, 5: 89-94, 2013.
doi: 10.3897/natureconservation.5.5734

[7] Reed-Smith J, Larson S. Otters in Captivity. In: Butterworth A. (Eds), Marine Mammal Welfare. Animal Welfare, 52: 573-584, 2017.
doi: 10.1007/978-3-319-46994-2_31

[8] Groussin M, Mazel F, Sanders JG, Smillie CS, Lavergne S, Thuiller W, Alm E. Unraveling the processes shaping mammalian gut microbiomes over evolutionary time. Nature Communications, 8: 14319, 2017.
doi: 10.1038/ncomms14319

[9] Heijtz RD, Wang S, Anuar F, Qian Y, Bjorkholm B. Normal gut microbiota modulates brain development and behavior. Procedings of the Natural Academy of Sciences of the United States of America, 108: 3047-3052, 2001.
doi: 10.1073/pnas.1010529108

[10] Hooper LV. Do symbiotic bacteria subvert host immunity? Nature Reviews Microbiology, 7: 367-375, 2009.
doi: 10.1038/nrmicro2114

[11] Amato KR, Leigh SR, Kent A, Mackie RI, Yeoman CJ, Stumpf RM, Garber PA. The role of gut microbes in satisfying the nutritional demands of adults and juveniles wild, black howler monkeys (Alouatta pigra). American Journal of Physical Anthropology, 155: 652-664, 2014.
doi: 10.1002/ajpa.22621

[12] Hooper LV, Midtvedt TM, Gordon JI. How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annual Review of Nutrition, 22: 283-307, 2002.
doi: 10.1146/annurev.nutr.22.011602.092259

[13] Tremaroli V, Backhed F. Functional interactions between the gut microbiota and host metabolism. Nature, 489: 242-249, 2012.
doi: 10.1038/nature11552. 10

[14] Mazmanian SK, Round JL, Kasper DL. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature, 453: 620-625, 2008.
doi: 10.1038/nature07008

[15] Claus S. Guillou H. Ellero-Simatos S. The gut microbiota: a major player in the toxicity of environmental pollutants? Npj Biofilms And Microbiomes, 2: 16003, 2016.
doi: 10.1038/npjbiofilms.2016.3

[16] Suzuki TA. Links between natural variation in the microbiome and host fitness in wild mammals. Integrative and Comparative Biology, 57: 756-769, 2017.
doi: 10.1093/icb/icx104

[17] Amato KR. Co-evolution in context: The importance of studying gut microbiomes in wild animals. Microbiome Science and Medicine, 1: 10-29, 2013.
doi: 10.2478/micsm-2013-0002

[18] Schwab C, Gänzle M. Comparative analysys of fecal microbiota and intestinal microbiota metabolic activity in captive polar bears. Canadian Journal of Microbiology, 57: 177-185, 2011.
doi: 10.1139/W10-113

[19] Schwab C, Cristescu B, Northrup JM, Stenhouse GB, Gänzle M. Diet and environment shape fecal bacterial microbiota composition and enteric pathogen load of grizzly bears. PLoS ONE, 6: e27905, 2011.
doi: 10.1371/journal.pone.0027905

[20] Robles-Alonso V, Guarner F. Progress in the knowledge of the intestinal human microbiota. Nutrición Hospitalaria, 28: 553- 7, 2013.
doi: 10.3305/nh.2013.28.3.6601

[21] Delport TC, Power ML, Harcourt RG, Webster KN, Tetu SG. Colony location and captivity influence the gut microbial community composition of Australian sea lion (Neophoca cinerea). Applied and Environmental Microbiology, 82: 3440-3449, 2016.
doi: 10.1128/AEM.00192-16

[22] McKenzie VJ, Song SJ, Delsuc F, Prest TL, Oliverio AM, Korpita TM, Alexiev A, Amato KR, Metcalf JL, Kowalewski
M, Avenant NL, Link A, Di Fiore A, Seguin-Orlando A, Feh C, Orlando L, Mendelson JR, Sanders J, Knight R. The effects of captivity on the mammalian gut microbiome. Integrative and Comparative Biology, 57: 690-704, 2017.
doi: 10.1093/icb/icx090

[23] Lavery TJ, Roudnew B, Deymour J, Mitchell JG, Jeffries T. High nutrient transport and cycling potential revealed in the microbial metagenome of Australian sea lion (Neophoca Cinerea) Faeces. PLoS ONE, 7: e36478, 2012.
doi: 10.1371/journal.pone.0036478

[24] Zhu L, Wu Q, Dai J, Zhang S, Wei F. Evidence of cellulose metabolism by the giant panda gut microbiome. Proceedings of the National Academy of Sciences of the United States of America, 108: 17714-19, 2011.
doi: 10.1073/pnas.1017956108

[25] Kohl KD, Skopec MM, Dearing MD. Captivity results in disparate loss of gut microbial diversity in closely related hosts. Conservation Physiology, 2: cou009, 2014.
doi: 10.1093/conphys/cou009

[26] Ley UE, Hamady M, Luzupone C, Turnbaugh PJ, Ramey RR, Bircher JS, Schlegel ML, Tucker TA, Schrenzel MD, Knight R, Gordon JI. Evolution of mammals and their gut microbes. Science, 320: 1647-51, 2008.
doi: 10.1126/science.1155725

[27] Muegge BD, Kuczynski J, Knights D, Clemente JC, González A, Fontana L, Henrissat B, Knight R, Gordon JI. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science, 332: 970-74, 2011.
doi: 10.1126/science.1198719

[28] Delsuc F, Metcalf JL, Wegener PL, Song SJ, González A, Knight R. Convergence of gut microbiomes in myrmecophagous mammals. Molecular ecology, 23: 1301-17, 2014.
doi: 10.1111/mec.12501

[29] Bahrndorff S, Alemu T, Alemneh T, Nielsen JL. The Microbiome of animals: implications for conservation biology. International Journal of Genomics, Article ID 5304028, 2016.
doi: 10.1155/2016/5304028

[30] Trevelline BK, Fontaine SS, Hartup BK, Kohl KD. Conservation biology needs a microbial renaissance: a call for the consideration of host-associated microbiota in wildlife management practices. Proceedings Of The Royal Society B. Biological sciences, 286:20182448, 2019.
doi: 10.1098/rspb.2018.2448

[31] Heiman ML, Greenway FL. A healthy gastrointestinal microbiome is dependent on dietary diversity. Molecular Metabolism, 5: 317-320, 2016.
doi: 10.1016/j.molmet.2016.02.005

[32] Seekatz AM, Schnizlein MK, Koenigsknecht MJ, Baker JR, Hasler WL, Bleske BE, YoungVB, Sun D. Spatial and temporal analysis of the stomach and small-intestinal microbiota in fasted healthy humans. mSphere, 4: e00126-19, 2019.
doi: 10.1128/mSphere.00126-19

[33] Álvarez-León R. Importancia de los peces en la nutrición de la nutria gigante de río (Pteronura brasiliensis) (Carnívora, Mustelidae) en Colombia. Revista Luna Azul, 28: 8-14, 2009.

[34] Chemes SB, Giraudo AR, Gil G. Dieta de Lontra Longicaudis (Carnivora, Mustelidae) En El Parque Nacional El Rey (Salta, Argentina) y Su Comparación Con Otras Poblaciones de La Cuenca Del Paraná. Mastozoología neotropical, 17: 19-29, 2010.

[35] Portocarrero A, Morales D, Diaz D. Nutrias de colombia. Fundación Omacha- Fundación Horizonte Verde. Proyecto Pijiwi. orinoko. 2009.
https://www.academia.edu/28752848/Nutrias_de_Colombia.pdf

[36] Santamaría J, López L, Soto CY. Detection and diversity evaluation of tetracycline resistance genes in grassland-based production systems in Colombia, South América. Frontiers in Antimicrobials, Resistance and Chemotherapy, 2: article 252, 2011.
doi: 10.3389/fmicb.2011.00252

[37] Loffler FE, Sung QJ, Li J, Tiedje JM. 16S rRNA gene based detection of tetrachloroethene dechlorinating Delsufuromonas and Dehalococcoides species. Applied and Environmental Microbiology, 66: 1369-1374, 2000.
doi: 10.1128/AEM.69.2.996-1003.2003

[38] Santamaría J, Parrado CA, López L. Soil Microbial Community Structure and Diversity in Cut Flower Cultures Under Conventional and Ecological Management. Revista Brasileira de Ciencia do Solo, 42: e0170016, 2018.
doi: 10.1590/18069657rbcs20170016

[39] Weller DM, Raaaijmakers JM, Gardener BBM, Thomashow LS. 2002. Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annual Review of Phytopathology, 40: 3019-48, 2002.
doi: 10.1146/annurev.phyto.40.030402.110010

[40] Cedeño R. Caracterización de comunidades bacterianas en sistemas de engorde de camarón mediante electroforesis en geles de gradiente denaturante (DGGE). Cenaim Informa, 133: 593-4, 2005.

[41] Swidsinski A, Loening-Baucke V, Verstraelen H, Osowska S, Doerffel Y. Biostructure of fecal microbiota in healthy subjects and patients with chronic idiopathic diarrhea. Gastroenterology, 135: 568-579, 2008.
doi: 10.1053/j.gastro.2008.04.017

[42] Claesson MJ, Cusack S, O'Sullivan O, Greene-Diniz R, de Weerd H, Flannery E, Marchesi JR, Falush D, Dinan T, Fitzgerald G, Stanton C, van Sinderen D, O'Connor M, Harnedy N, O'Connor K, Henry C, O'Mahony D, Fitzgerald AP, Shanahan F, Twomey C, Hill C, Ross RP, O'Toole PW. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proceedings of the National Academy of Sciences of the United States of
America, 108 Suppl 1:4586-4591, 2011.
doi: 10.1073/pnas.1000097107

[43] Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, Almeida M, Arumugam M, Batto J, Kennedy S, Leonard P, Li J, Burgdorf K, Grarup N, Jørgensen T, Brandslund I, Nielsen H, Juncker A, Bertalan M, Levenez F, Pons N, Rasmussen S, Sunagawa S, Tap J, Tims S, Zoetendal E, Brunak S, Clément K,, Doré J, Kleerebezem M, Kristiansen K, Renault P, SicheritzPonten T, De Vos W, Zucker J, Raes J, Hansen T, Bork P, Wang J, Ehrlich S, Pedersen O, Guedon E, Delorme C, Layec S, Khaci G, Van De Guchte M, Vandemeulebrouck G, Jamet A, Dervyn
R, Sanchez N, Maguin E, Haimet F, Winogradski Y, Cultrone A, Leclerc M, Juste C, Blottière H, Pelletier E, Lepaslier D, Artiguenave F, Bruls T, Weissenbach J, Turner K, Parkhill J, Antolin M, Manichanh C, Casellas F, Boruel N, Varela E, Torrejon A, Guarner F, Denariaz G, Derrien M, Van Hylckama Vlieg J, Veiga P, Oozeer R, Knol J, Rescigno M, Brechot C, M'Rini C, Mérieux A, Yamada T. Richness of human gut microbiome correlates with metabolic markers. Nature, 500: 541-546, 2013.
doi: 10.1038/nature12506

[44] Cotillard A, Kennedy S, Kong L, Prifti E, Pons N, Le Chatelier E, Almeida M, Quinquis B, Levenez F, Galleron N, Gougis S, Rizkalla S, Batto J, Renault P, Doré J, Zucker J, Clément K, Ehrlich S, Blottière H, Leclerc M, Juste C, De Wouters T, Lepage P, Fouqueray C, Basdevant A, Henegar C, Godard C, Fondacci M, Rohia A, Hajduch F, Weissenbach J, Pelletier E, Le Paslier D, Gauchi J, Gibrat J, Loux V, Carré W, Maguin E, Van De Guchte M, Jamet A, Boumezbeur F, Layec. Dietary intervention impact on gut microbial gene richness. Nature, 500: 585-588, 2013.
doi: 10.1038/nature12480

[45] Wu G, Chen J, Hoffmann C, Bittinger K, Chen Y, Keilbaugh S, Bewtra M, Knights D, Walters W, Knight R, Sinha R, Gilroy E, Gupta K, Baldassano R, Nessel L, Li H, Bushman F, Lewis J. Linking long-term dietary patterns with gut microbial enterotypes. Science, 334: 105-108, 2011.
doi: 10.1126/science.1208344

[46] David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ. Diet rapidly and reproducibly alters the human gut microbiome. Nature, 505: 559-563, 2014.
doi: 10.1038/nature12820

[47] Gilbert JA, Quinn RA, Debelius J, Xu ZZ, Morton J, Garg N, Jansson JK, Knight, R. Microbiome wide associations studies link dynamic microbial consortia to disease. Nature, 535: 94-103,2016.
doi: 10.1038/nature18850

[48] Degnan PH, Pusey AE, Lonsdorf EV, Goodall J, Wroblewski EE, Wilson ML, Ochman H. Factors associated with the diversification of the gut microbial communities within chimpazees from Gombe National Park. Proceedings of the National Academy of Sciences, 109: 13034-13039, 2012.
doi: 10.1073/pnas.1110994109

[49] Bonder MJ, Kurilshikov A, Tigchelaar EF, Mujagic Z, Imhann F, Vila AV, Deelen P, Vatanen T, Schirmer M, Smeekens SP, Zhernakova DV, Jankipersadsing SA, Jaeger M, Oosting M, Cenit MC, Masclee AA, Swertz MA, Li Y, Kumar V, Joosten L, Harmsen H, Weersma RK, Franke L, Hofker MH, Xavier RJ, Jonkers D, Netea MG, Wijmenga C, Fu J, Zhernakova A. The effect of host genetics on the gut microbiome. Nature Genetics, 48: 1407-1412, 2016.
doi: 10.1038/ng.3663

[50] Barko PC, McMichael MA, Swanson KS, Williams DA. The gastrointestinal microbiome: A review. Journal of veterinary internal medicine, 32: 9–25, 2018.
doi: 10.1111/jvim.14875

[51] Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R. Bacterial community variation in human body habitats across space and time. Science, 326: 1694-1697, 2009.
doi: 10.1126/science.1177486

[52] Zhang Z, Li D, Refaey MM, Xu W. High spatial and temporal variations of microbial community along the southern catfish gastrointestinal tract: Insights into dynamic food digestion. Frontiers in microbiology, 8: Article 1531, 2017.
doi: 10.3389/fmicb.2017.01531

[53] Bobbie C, Mykytczuk N, Schulte A. Temporal variation of the microbiome is dependent on body region in a wild mammal (Tamiasciurus hudsonicus). FEMS Microbiology Ecology, 93, 2017.
doi: 10.1093/femsec/fix081

[54] Ji BW, Sheth RU, Dixit PD. Wang HH, Vitkup D. Quantifying spatiotemporal variability and noise in absolute microbiota abundances using replicate sampling. Nature Methods, 16: 731-736, 2019.
doi: 10.1038/s41592-019-0467-y

[55] Falony G,Vieira-Silva S, Raes J. Richness and ecosystem development across faecal snapshots of the gut microbiota. Nature Microbiology, 3: 526-528, 2018.
doi: 10.1038/s41564-018-0143-5

[56] Amato KR, Yeoman CJ, Kent A, Righini N, Carbonero F, Estrada A, Gaskins HR, Stumpf RM, Yildirim S, Torralba M, Gillis M, Wilson BA, Nelson KE, White BA, Leigh SR. Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. The ISME journal, 7: 1344-1353, 2013.
doi: 10.1038/ismej.2013.16

[57] Nakamura N, Amato KR, Garber P, Estrada A. Mackie RI, Gaskins HR. Analysis of the hydrogenotrophic microbiota of wild and captive black howler monkeys (Alouatta pigra) in palenque national park, Mexico. American Journal of Primatology, 73: 909-919, 2011.
doi: 10.1002/ajp.20961

[58] Dhanasiri AKS, Brunvold L, Brinchmann MF. Kornes K, Bergh O, Kiron V. Changes in the Intestinal Microbiota of Wild Atlantic cod Gadus morhua L. Upon captive rearing. microbial ecology, 61: 20-30, 2011.
doi: 10.1007/s00248-010-9673-y

[59] Reese AT, Dunn RR. Drivers of microbiome biodiversity: A review of general rules, feces, and ignorance. MBio, 9: e01294-18, 2018.
doi: 10.1128/mBio.01294-18

[60] Restrepo CA, Botero-Botero Á. Trophic ecology of neotropical otter Lontra longicaudis (Carívora, Mustelidae) in La Vieja river, alto Cauca, Colombia. Boletín Científico. Centro de Museos. Museo de Historia Natural, 16: 207-214, 2012.

[61] Ingala MR, Simmons NB, Wultsch C, Krampis K, Speer KA, Perkins SL. Comparing Microbiome Sampling Methods in a Wild Mammal: Fecal and Intestinal Samples Record Different Signals of Host Ecology, Evolution. Frontiers in Microbiology, 9:803, 2018.
doi: 10.3389/fmicb.2018.00803

[62] Lindahl, T. Instability and decay of the primary structure of DNA. Nature, 362: 709-715, 1993.
doi: 10.1038/362709a0
How to Cite
Santamaría-Vanegas, J., & Rodríguez-Rey, L. C. (2020). Gut bacteria comparison between wild and captive neotropical otters. Universitas Scientiarum, 25(2), 359–384. https://doi.org/10.11144/Javeriana.SC25-2.gbcb
Section
Biodiversity