Abstract
The neotropical otter (Lontra longicaudis) is considered a flagship species for the conservation of the ecosystems in which it resides and is currently in a vulnerable state. As a conservation strategy for this species, rehabilitation, breeding, and reintroduction programs of captive individuals have been proposed. However, it is likely that the environment and feeding conditions in captivity result in gut microbial communities that differ from those in wild animals. Gut microbial communities have an important role in the physiological performance of an animal. To determine differences between gut microbial communities of otters in wild and captive living conditions, the structure and diversity of their gut bacterial communities were determined using 16S rDNA molecular markers. Total DNA was isolated from fecal samples of wild animals from the La Vieja River basin and from captive animals in the Cali Zoo. As expected, the gut bacterial communities of captive animals converged to a more similar structure, and their bacterial diversity was significantly lower than that found in wild animals.
Gallo-Reynoso JP, Ramos-Rosas NN, Rangel-Aguilar Ó. Depredación de aves acuáticas por la nutria neotropical (Lontra longicaudis annectens), en el río Yaqui, Sonora, México. Revista Mexicana de Biodiversidad, 79: 275–279, 2008.
doi: 10.22201/ib.20078706e.2008.001.502
Fundación Omacha, Ministerio de Ambiente y Desarrollo Sostenible. Plan de manejo para la conservación de las nutrias (Lontra longicaudis y Pteronura brasiliensis) en Colombia, (2016).
https://www.minambiente.g ov.co/imag es/BosquesBiodiversidadyServiciosEcosistemicos/pdf/Programas-para-la-gestion-de-fauna-y-flora/plan-manejoconservacion-nutrias-colombia-final.pdf
Rodrigues L de A, Leuchtenberger C, Kasper CB, Junior OC, Fonseca da Silva VC. Avaliação do risco de extinção da lontra neotropical Lontra longicaudis (Olfers, 1818) no Brasil. Biodiversidade Brasileira, 3: 216-227, 2013.
Rheingantz ML, Trinca CS. Lontra longicaudis. The IUCN Red List of Threatened Species 2015.3
doi: 10.2305/IUCN.UK.2015-2.RLTS.T12304A21937379.en
Corporación Autónoma Regional del Valle del Cauca. Nutria de río: planes de manejo para 18 vertebrados amenazados del departamento del Valle del Cauca. 2007
https://www.researchg ate.net/profile/Isabel_Avila2/publication/293606223_Planes_De_Manejo_Para_18_
Vertebrados_Amenazados_Del_Departamento_Del_Valle_Del_Cauca/links/56f5b8b108ae7c1fda2eeb56/Planes-DeManejo-Para-18-Vertebrados-Amenazados-Del-DepartamentoDel-Valle-Del-Cauca.pdf
Pacifici M, Santini L, Di Marco M, Baisero D, Francucci L, Grottolo Marasini G, Rondinini C. Generation length for mammals. Nature Conservation, 5: 89-94, 2013.
doi: 10.3897/natureconservation.5.5734
Reed-Smith J, Larson S. Otters in Captivity. In: Butterworth A. (Eds), Marine Mammal Welfare. Animal Welfare, 52: 573-584, 2017.
doi: 10.1007/978-3-319-46994-2_31
Groussin M, Mazel F, Sanders JG, Smillie CS, Lavergne S, Thuiller W, Alm E. Unraveling the processes shaping mammalian gut microbiomes over evolutionary time. Nature Communications, 8: 14319, 2017.
doi: 10.1038/ncomms14319
Heijtz RD, Wang S, Anuar F, Qian Y, Bjorkholm B. Normal gut microbiota modulates brain development and behavior. Procedings of the Natural Academy of Sciences of the United States of America, 108: 3047-3052, 2001.
doi: 10.1073/pnas.1010529108
Hooper LV. Do symbiotic bacteria subvert host immunity? Nature Reviews Microbiology, 7: 367-375, 2009.
doi: 10.1038/nrmicro2114
Amato KR, Leigh SR, Kent A, Mackie RI, Yeoman CJ, Stumpf RM, Garber PA. The role of gut microbes in satisfying the nutritional demands of adults and juveniles wild, black howler monkeys (Alouatta pigra). American Journal of Physical Anthropology, 155: 652-664, 2014.
doi: 10.1002/ajpa.22621
Hooper LV, Midtvedt TM, Gordon JI. How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annual Review of Nutrition, 22: 283-307, 2002.
doi: 10.1146/annurev.nutr.22.011602.092259
Tremaroli V, Backhed F. Functional interactions between the gut microbiota and host metabolism. Nature, 489: 242-249, 2012.
doi: 10.1038/nature11552. 10
Mazmanian SK, Round JL, Kasper DL. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature, 453: 620-625, 2008.
doi: 10.1038/nature07008
Claus S. Guillou H. Ellero-Simatos S. The gut microbiota: a major player in the toxicity of environmental pollutants? Npj Biofilms And Microbiomes, 2: 16003, 2016.
doi: 10.1038/npjbiofilms.2016.3
Suzuki TA. Links between natural variation in the microbiome and host fitness in wild mammals. Integrative and Comparative Biology, 57: 756-769, 2017.
doi: 10.1093/icb/icx104
Amato KR. Co-evolution in context: The importance of studying gut microbiomes in wild animals. Microbiome Science and Medicine, 1: 10-29, 2013.
doi: 10.2478/micsm-2013-0002
Schwab C, Gänzle M. Comparative analysys of fecal microbiota and intestinal microbiota metabolic activity in captive polar bears. Canadian Journal of Microbiology, 57: 177-185, 2011.
doi: 10.1139/W10-113
Schwab C, Cristescu B, Northrup JM, Stenhouse GB, Gänzle M. Diet and environment shape fecal bacterial microbiota composition and enteric pathogen load of grizzly bears. PLoS ONE, 6: e27905, 2011.
doi: 10.1371/journal.pone.0027905
Robles-Alonso V, Guarner F. Progress in the knowledge of the intestinal human microbiota. Nutrición Hospitalaria, 28: 553- 7, 2013.
doi: 10.3305/nh.2013.28.3.6601
Delport TC, Power ML, Harcourt RG, Webster KN, Tetu SG. Colony location and captivity influence the gut microbial community composition of Australian sea lion (Neophoca cinerea). Applied and Environmental Microbiology, 82: 3440-3449, 2016.
doi: 10.1128/AEM.00192-16
McKenzie VJ, Song SJ, Delsuc F, Prest TL, Oliverio AM, Korpita TM, Alexiev A, Amato KR, Metcalf JL, Kowalewski
M, Avenant NL, Link A, Di Fiore A, Seguin-Orlando A, Feh C, Orlando L, Mendelson JR, Sanders J, Knight R. The effects of captivity on the mammalian gut microbiome. Integrative and Comparative Biology, 57: 690-704, 2017.
doi: 10.1093/icb/icx090
Lavery TJ, Roudnew B, Deymour J, Mitchell JG, Jeffries T. High nutrient transport and cycling potential revealed in the microbial metagenome of Australian sea lion (Neophoca Cinerea) Faeces. PLoS ONE, 7: e36478, 2012.
doi: 10.1371/journal.pone.0036478
Zhu L, Wu Q, Dai J, Zhang S, Wei F. Evidence of cellulose metabolism by the giant panda gut microbiome. Proceedings of the National Academy of Sciences of the United States of America, 108: 17714-19, 2011.
doi: 10.1073/pnas.1017956108
Kohl KD, Skopec MM, Dearing MD. Captivity results in disparate loss of gut microbial diversity in closely related hosts. Conservation Physiology, 2: cou009, 2014.
doi: 10.1093/conphys/cou009
Ley UE, Hamady M, Luzupone C, Turnbaugh PJ, Ramey RR, Bircher JS, Schlegel ML, Tucker TA, Schrenzel MD, Knight R, Gordon JI. Evolution of mammals and their gut microbes. Science, 320: 1647-51, 2008.
doi: 10.1126/science.1155725
Muegge BD, Kuczynski J, Knights D, Clemente JC, González A, Fontana L, Henrissat B, Knight R, Gordon JI. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science, 332: 970-74, 2011.
doi: 10.1126/science.1198719
Delsuc F, Metcalf JL, Wegener PL, Song SJ, González A, Knight R. Convergence of gut microbiomes in myrmecophagous mammals. Molecular ecology, 23: 1301-17, 2014.
doi: 10.1111/mec.12501
Bahrndorff S, Alemu T, Alemneh T, Nielsen JL. The Microbiome of animals: implications for conservation biology. International Journal of Genomics, Article ID 5304028, 2016.
doi: 10.1155/2016/5304028
Trevelline BK, Fontaine SS, Hartup BK, Kohl KD. Conservation biology needs a microbial renaissance: a call for the consideration of host-associated microbiota in wildlife management practices. Proceedings Of The Royal Society B. Biological sciences, 286:20182448, 2019.
doi: 10.1098/rspb.2018.2448
Heiman ML, Greenway FL. A healthy gastrointestinal microbiome is dependent on dietary diversity. Molecular Metabolism, 5: 317-320, 2016.
doi: 10.1016/j.molmet.2016.02.005
Seekatz AM, Schnizlein MK, Koenigsknecht MJ, Baker JR, Hasler WL, Bleske BE, YoungVB, Sun D. Spatial and temporal analysis of the stomach and small-intestinal microbiota in fasted healthy humans. mSphere, 4: e00126-19, 2019.
doi: 10.1128/mSphere.00126-19
Álvarez-León R. Importancia de los peces en la nutrición de la nutria gigante de río (Pteronura brasiliensis) (Carnívora, Mustelidae) en Colombia. Revista Luna Azul, 28: 8-14, 2009.
Chemes SB, Giraudo AR, Gil G. Dieta de Lontra Longicaudis (Carnivora, Mustelidae) En El Parque Nacional El Rey (Salta, Argentina) y Su Comparación Con Otras Poblaciones de La Cuenca Del Paraná. Mastozoología neotropical, 17: 19-29, 2010.
Portocarrero A, Morales D, Diaz D. Nutrias de colombia. Fundación Omacha- Fundación Horizonte Verde. Proyecto Pijiwi. orinoko. 2009.
https://www.academia.edu/28752848/Nutrias_de_Colombia.pdf
Santamaría J, López L, Soto CY. Detection and diversity evaluation of tetracycline resistance genes in grassland-based production systems in Colombia, South América. Frontiers in Antimicrobials, Resistance and Chemotherapy, 2: article 252, 2011.
doi: 10.3389/fmicb.2011.00252
Loffler FE, Sung QJ, Li J, Tiedje JM. 16S rRNA gene based detection of tetrachloroethene dechlorinating Delsufuromonas and Dehalococcoides species. Applied and Environmental Microbiology, 66: 1369-1374, 2000.
doi: 10.1128/AEM.69.2.996-1003.2003
Santamaría J, Parrado CA, López L. Soil Microbial Community Structure and Diversity in Cut Flower Cultures Under Conventional and Ecological Management. Revista Brasileira de Ciencia do Solo, 42: e0170016, 2018.
doi: 10.1590/18069657rbcs20170016
Weller DM, Raaaijmakers JM, Gardener BBM, Thomashow LS. 2002. Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annual Review of Phytopathology, 40: 3019-48, 2002.
doi: 10.1146/annurev.phyto.40.030402.110010
Cedeño R. Caracterización de comunidades bacterianas en sistemas de engorde de camarón mediante electroforesis en geles de gradiente denaturante (DGGE). Cenaim Informa, 133: 593-4, 2005.
Swidsinski A, Loening-Baucke V, Verstraelen H, Osowska S, Doerffel Y. Biostructure of fecal microbiota in healthy subjects and patients with chronic idiopathic diarrhea. Gastroenterology, 135: 568-579, 2008.
doi: 10.1053/j.gastro.2008.04.017
Claesson MJ, Cusack S, O'Sullivan O, Greene-Diniz R, de Weerd H, Flannery E, Marchesi JR, Falush D, Dinan T, Fitzgerald G, Stanton C, van Sinderen D, O'Connor M, Harnedy N, O'Connor K, Henry C, O'Mahony D, Fitzgerald AP, Shanahan F, Twomey C, Hill C, Ross RP, O'Toole PW. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proceedings of the National Academy of Sciences of the United States of
America, 108 Suppl 1:4586-4591, 2011.
doi: 10.1073/pnas.1000097107
Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, Almeida M, Arumugam M, Batto J, Kennedy S, Leonard P, Li J, Burgdorf K, Grarup N, Jørgensen T, Brandslund I, Nielsen H, Juncker A, Bertalan M, Levenez F, Pons N, Rasmussen S, Sunagawa S, Tap J, Tims S, Zoetendal E, Brunak S, Clément K,, Doré J, Kleerebezem M, Kristiansen K, Renault P, SicheritzPonten T, De Vos W, Zucker J, Raes J, Hansen T, Bork P, Wang J, Ehrlich S, Pedersen O, Guedon E, Delorme C, Layec S, Khaci G, Van De Guchte M, Vandemeulebrouck G, Jamet A, Dervyn
R, Sanchez N, Maguin E, Haimet F, Winogradski Y, Cultrone A, Leclerc M, Juste C, Blottière H, Pelletier E, Lepaslier D, Artiguenave F, Bruls T, Weissenbach J, Turner K, Parkhill J, Antolin M, Manichanh C, Casellas F, Boruel N, Varela E, Torrejon A, Guarner F, Denariaz G, Derrien M, Van Hylckama Vlieg J, Veiga P, Oozeer R, Knol J, Rescigno M, Brechot C, M'Rini C, Mérieux A, Yamada T. Richness of human gut microbiome correlates with metabolic markers. Nature, 500: 541-546, 2013.
doi: 10.1038/nature12506
Cotillard A, Kennedy S, Kong L, Prifti E, Pons N, Le Chatelier E, Almeida M, Quinquis B, Levenez F, Galleron N, Gougis S, Rizkalla S, Batto J, Renault P, Doré J, Zucker J, Clément K, Ehrlich S, Blottière H, Leclerc M, Juste C, De Wouters T, Lepage P, Fouqueray C, Basdevant A, Henegar C, Godard C, Fondacci M, Rohia A, Hajduch F, Weissenbach J, Pelletier E, Le Paslier D, Gauchi J, Gibrat J, Loux V, Carré W, Maguin E, Van De Guchte M, Jamet A, Boumezbeur F, Layec. Dietary intervention impact on gut microbial gene richness. Nature, 500: 585-588, 2013.
doi: 10.1038/nature12480
Wu G, Chen J, Hoffmann C, Bittinger K, Chen Y, Keilbaugh S, Bewtra M, Knights D, Walters W, Knight R, Sinha R, Gilroy E, Gupta K, Baldassano R, Nessel L, Li H, Bushman F, Lewis J. Linking long-term dietary patterns with gut microbial enterotypes. Science, 334: 105-108, 2011.
doi: 10.1126/science.1208344
David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ. Diet rapidly and reproducibly alters the human gut microbiome. Nature, 505: 559-563, 2014.
doi: 10.1038/nature12820
Gilbert JA, Quinn RA, Debelius J, Xu ZZ, Morton J, Garg N, Jansson JK, Knight, R. Microbiome wide associations studies link dynamic microbial consortia to disease. Nature, 535: 94-103,2016.
doi: 10.1038/nature18850
Degnan PH, Pusey AE, Lonsdorf EV, Goodall J, Wroblewski EE, Wilson ML, Ochman H. Factors associated with the diversification of the gut microbial communities within chimpazees from Gombe National Park. Proceedings of the National Academy of Sciences, 109: 13034-13039, 2012.
doi: 10.1073/pnas.1110994109
Bonder MJ, Kurilshikov A, Tigchelaar EF, Mujagic Z, Imhann F, Vila AV, Deelen P, Vatanen T, Schirmer M, Smeekens SP, Zhernakova DV, Jankipersadsing SA, Jaeger M, Oosting M, Cenit MC, Masclee AA, Swertz MA, Li Y, Kumar V, Joosten L, Harmsen H, Weersma RK, Franke L, Hofker MH, Xavier RJ, Jonkers D, Netea MG, Wijmenga C, Fu J, Zhernakova A. The effect of host genetics on the gut microbiome. Nature Genetics, 48: 1407-1412, 2016.
doi: 10.1038/ng.3663
Barko PC, McMichael MA, Swanson KS, Williams DA. The gastrointestinal microbiome: A review. Journal of veterinary internal medicine, 32: 9–25, 2018.
doi: 10.1111/jvim.14875
Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R. Bacterial community variation in human body habitats across space and time. Science, 326: 1694-1697, 2009.
doi: 10.1126/science.1177486
Zhang Z, Li D, Refaey MM, Xu W. High spatial and temporal variations of microbial community along the southern catfish gastrointestinal tract: Insights into dynamic food digestion. Frontiers in microbiology, 8: Article 1531, 2017.
doi: 10.3389/fmicb.2017.01531
Bobbie C, Mykytczuk N, Schulte A. Temporal variation of the microbiome is dependent on body region in a wild mammal (Tamiasciurus hudsonicus). FEMS Microbiology Ecology, 93, 2017.
doi: 10.1093/femsec/fix081
Ji BW, Sheth RU, Dixit PD. Wang HH, Vitkup D. Quantifying spatiotemporal variability and noise in absolute microbiota abundances using replicate sampling. Nature Methods, 16: 731-736, 2019.
doi: 10.1038/s41592-019-0467-y
Falony G,Vieira-Silva S, Raes J. Richness and ecosystem development across faecal snapshots of the gut microbiota. Nature Microbiology, 3: 526-528, 2018.
doi: 10.1038/s41564-018-0143-5
Amato KR, Yeoman CJ, Kent A, Righini N, Carbonero F, Estrada A, Gaskins HR, Stumpf RM, Yildirim S, Torralba M, Gillis M, Wilson BA, Nelson KE, White BA, Leigh SR. Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. The ISME journal, 7: 1344-1353, 2013.
doi: 10.1038/ismej.2013.16
Nakamura N, Amato KR, Garber P, Estrada A. Mackie RI, Gaskins HR. Analysis of the hydrogenotrophic microbiota of wild and captive black howler monkeys (Alouatta pigra) in palenque national park, Mexico. American Journal of Primatology, 73: 909-919, 2011.
doi: 10.1002/ajp.20961
Dhanasiri AKS, Brunvold L, Brinchmann MF. Kornes K, Bergh O, Kiron V. Changes in the Intestinal Microbiota of Wild Atlantic cod Gadus morhua L. Upon captive rearing. microbial ecology, 61: 20-30, 2011.
doi: 10.1007/s00248-010-9673-y
Reese AT, Dunn RR. Drivers of microbiome biodiversity: A review of general rules, feces, and ignorance. MBio, 9: e01294-18, 2018.
doi: 10.1128/mBio.01294-18
Restrepo CA, Botero-Botero Á. Trophic ecology of neotropical otter Lontra longicaudis (Carívora, Mustelidae) in La Vieja river, alto Cauca, Colombia. Boletín Científico. Centro de Museos. Museo de Historia Natural, 16: 207-214, 2012.
Ingala MR, Simmons NB, Wultsch C, Krampis K, Speer KA, Perkins SL. Comparing Microbiome Sampling Methods in a Wild Mammal: Fecal and Intestinal Samples Record Different Signals of Host Ecology, Evolution. Frontiers in Microbiology, 9:803, 2018.
doi: 10.3389/fmicb.2018.00803
Lindahl, T. Instability and decay of the primary structure of DNA. Nature, 362: 709-715, 1993.
doi: 10.1038/362709a0
Univ. Sci. is registered under a Creative Commons Attribution 4.0 International Public License. Thus, this work may be reproduced, distributed, and publicly shared in digital format, as long as the names of the authors and Pontificia Universidad Javeriana are acknowledged. Others are allowed to quote, adapt, transform, auto-archive, republish, and create based on this material, for any purpose (even commercial ones), provided the authorship is duly acknowledged, a link to the original work is provided, and it is specified if changes have been made. Pontificia Universidad Javeriana does not hold the rights of published works and the authors are solely responsible for the contents of their works; they keep the moral, intellectual, privacy, and publicity rights. Approving the intervention of the work (review, copy-editing, translation, layout) and the following outreach, are granted through an use license and not through an assignment of rights. This means the journal and Pontificia Universidad Javeriana cannot be held responsible for any ethical malpractice by the authors. As a consequence of the protection granted by the use license, the journal is not required to publish recantations or modify information already published, unless the errata stems from the editorial management process. Publishing contents in this journal does not generate royalties for contributors.