Abstract
Abstract. Introduction. Polyhydroxyalkanoate (PHA) is a useful, carbon-neutral polymer that can be produced from renewable carbon sources by microorganisms, making it a sustainable and environmentally friendly material. Currently, production of the biopolymer is not competitive in terms of cost and yield; however, production by different bacterial strains may provide economic viability, especially since substituting biodegradable plastics for nondegradable synthetic plastics has drawn interest from both academia and the commercial world. Objective. The aim of this work was to describe the isolation and partial characterization of PHA-producing bacteria isolated from five sites (gas stations) in coastal regions of Tumaco Island, Nariño-Colombia, and classify different physicochemical parameters of granules that show the production of the biopolymer. Materials and methods. A viable colony staining method using Nile red was used to preliminarily screen for PHA-producing bacteria. Colonies were isolated, characterized via biochemical, microbial, and molecular methods, and tested for antimicrobial susceptibility and fermentation. Results. More than thirty-eight strains were identified as potential PHA-positive isolates from this screening approach but, just one isolated was viable in PHA production (T2-25A). All isolates were resistant to metronidazole, ampicillin, trimethoprim sulfamethoxazole, cephalothin, ceftriaxone, and cefazolin, and 27.3 % of isolates were resistant to novobiocin. Conclusions. One promising PHA-producing isolate was obtained. Nevertheless, this information will complement future studies of the conditions necessary to produce PHA.
Moreover, antibiotic resistance data have attracted attention, especially because of the origin of the source waters of the isolates.
Alsaadi A, Ganesen SSK, Amelia TSM, Moanis R, Peeters E, Vigneswari S, Bhubalan K. Polyhydroxyalkanoate (PHA) Biopolymer Synthesis by Marine Bacteria of the Malaysian Coral Triangle Region and Mining for PHA Synthase Genes. Microorganisms, 10(10): 2057, 2022.
doi: 10.3390/microorganisms10102057
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. Journal of molecular biology, 215(3): 403–410, 1990.
doi: 10.1016/S0022-2836(05)80360-2
Biemer JJ. Antimicrobial susceptibility testing by the Kirby-Bauer disc difusion method. Annals of Clinical and Laboratory Science. 3(2): 135–40, 1973.
Blair JM, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJ. Molecular mechanisms of antibiotic resistance. Nature reviews. Microbiology, 13(1): 42–51, 2015.
doi: 10.1038/nrmicro3380
Blanco FG, Hernández N, Rivero-Buceta V, Maestro B, Sanz JM, Mato A, Hernández-Arriaga AM, Prieto MA. From Residues to Added-Value Bacterial Biopolymers as Nanomaterials for Biomedical Applications. Nanomaterials (Basel). 11(6): 1492, 2021.
doi: 10.3390/nano11061492
Bonilla Urrutia NS. Comunidad fitoplanctónica presente en la Bahía de Tumaco IIAP 2018. V1.1. Instituto de Investigaciones Ambientales del Pacífico John Von Neumann – IIAP. Dataset/Occurrence. 2022.
doi: 10.15472/cayjuj
Braunegg G, Lefebvre G, Genser KF. Polyhydroxyalkanoates, biopolyesters from renewable resources: Physiological and engineering aspects. Journal of Biotechnology, 65: 127–161, 1998.
Bunse C, Pinhassi J. Marine Bacterioplankton Seasonal Succession Dynamics. Trends in microbiology 25(6): 494-505, 2017.
doi: 10.1016/j.tim.2016.12.013
Ciebiada M, Kubiak K, Daroch M. Modifying the Cyanobacterial Metabolism as a Key to Eficient Biopolymer Production in Photosynthetic Microorganisms. International journal of molecular sciences, 21(19): 7204, 2020.
doi: 10.3390/ijms21197204
Clinical and Laboratory Standards Institute, 2009. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. Nineteenth informational supplement M100–S19.
Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, Brown CT, Porras-Alfaro A, Kuske CR, Tiedje JM. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Research. 42(Database issue): 633–642, 2014.
doi: 10.1093/nar/gkt1244
Cristea A, Baricz A, Leopold N, Floare CG, Borodi G, Kacso I, Tripon S, Bulzu PA, Andrei AȘ, Cadar O, Levei EA, Banciu HL. Polyhydroxybutyrate production by an extremely halotolerant Halomonas elongata strain isolated from the hypersaline meromictic Fără Fund Lake (Transylvanian Basin, Romania). Journal of applied microbiology. 125(5): 1343–1357, 2018.
doi: 10.1111/jam.14029
Dhangdhariya JH, Dubey S, Trivedi HB, Pancha I, Bhatt JK, Dave BP, Mishra S. Polyhydroxyalkanoate from marine Bacillus megaterium using CSMCRI’s Dry Sea Mix as a novel growth medium. International journal of biological macromolecules. 76: 254–261, 2015.
doi: 10.1016/j.ijbiomac.2015.02.009
Diéguez AL, Balboa S, Romalde JL. Halomonas borealis sp. Nov. and Halomonas niordiana sp. Nov., two new species isolated from seawater. Systematic and applied microbiology. 43(1): 126040, 2020.
doi: 10.1016/j.syapm.2019.126040
Di Cesare A, Pinnell L J, Brambilla D, Elli G, Sabatino R, Sathicq MB, Corno G, O’ Donnell C, & Turner JW. Bioplastic accumulates antibiotic and metal resistance genes in coastal marine sediments. Environmental pollution (Barking, Essex: 1987), 291: 118161, 2021.
doi: 10.1016/j.envpol.2021.118161
El-Malek FA, Khairy H, Farag A, Omar S. The sustainability of microbial bioplastics, production, and applications. International journal of biological macromolecules. 157: 319-328, 2020.
doi: 10.1016/j.ijbiomac.2020.04.076
Fernández P, Ortiz FL, España JE. Caracterización de poli-(hidroxibutirato – co-hidroxivalerato) sintetizado por una cepa silvestre de Bacillus mycoides, FLB2. Revista centro de estudios en salud, 1(6): 1–10, 2005.
Giordano D. Bioactive Molecules from Extreme Environments. Marine Drugs. 18(12): 640, 2020.
doi: 10.3390/md18120640
Gomes Gradíssimo D, Pereira Xavier L, Valadares Santos A. Cyanobacterial Polyhydroxyalkanoates: A Sustainable Alternative in Circular Economy. Molecules. 25(18): 4331, 2020.
doi: 10.3390/molecules25184331
Gureeva MV, Belousova EV, Dubinina GA, Novikov AA, Kopitsyn DS, Grabovich MY. Thioflexithrix psekupsensis gen. nov., sp. nov., a filamentous gliding sulfur bacterium from the family Beggiatoaceae. International journal of systematic and evolutionary microbiology, 69(3): 798-804, 2019.
doi: 10.1099/ijsem.0.003240
Guzmán A, Ángela I, Zambrano Ortíz MM, Casanova-Rosero RF, Selvaraj, JJ, Martínez A. La condición ecológica de la bahía de Tumaco (Pacífico colombiano): evaluación de la calidad del agua y del fitoplancton. Boletín Científico CIOH, 32: 3–16, 2014.
doi: 10.26640/22159045.260
Hall CW, Mah TF. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiology Review. 41(3): 276–301, 2017.
doi: 10.1093/femsre/fux010
Han J, Wu LP, Hou J, Zhao D, Xiang H. Biosynthesis, characterization, and hemostasis potential of tailor-made poly(3-hydroxybutyrate-co-3-hydroxyvalerate) produced by Haloferax mediterranei. Biomacromolecules. 16(2): 578–588, 2015.
doi: 10.1021/bm5016267
Higuchi-Takeuchi M, Morisaki K, Numata K. A Screening Method for the Isolation of Polyhydroxyalkanoate-Producing Purple Non sulfur Photosynthetic Bacteria from Natural Seawater. Frontiers Microbiology. 7: 1509, 2016.
doi: 10.3389/fmicb.2016.01509
Huang P, Okoshi T, Mizuno S, Hiroe A, Tsuge T. Gas chromatography-mass spectrometry-based monomer composition analysis of medium-chain-length polyhydroxyalkanoates biosynthesized by Pseudomonas spp. Bioscience, biotechnology, and biochemistry. 82(9): 1615–1623, 2018.
doi: 10.1080/09168451.2018.1473027
Javaid H, Nawaz A, Riaz N, Mukhtar H, -Ul-Haq I, Shah KA, Khan H, Naqvi SM, Shakoor S, Rasool A, Ullah K, Manzoor R, Kaleem I, Murtaza G. Biosynthesis of Polyhydroxyalkanoates (PHA) by the Valorization of Biomass and Synthetic Waste. Molecules. 25(23): 5539, 2020.
doi: 10.3390/molecules25235539
Koller M, Maršálek L, de Sousa Dias MM, Braunegg G. Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. New Biotechnology. 37(Pt A): 24–38, 2017.
doi: 10.1016/j.nbt.2016.05.001
Kumar A, Srivastava JK, Mallick N, Singh AK. Commercialization of bacterial cell factories for the sustainable production of polyhydroxyalkanoate thermoplastics: progress and prospects. Recent patents on biotechnology. 9: 4–21, 2015.
doi: 10.2174/2211550104666150615211414
Li T, Elhadi D, Chen GQ. Co-production of microbial polyhydroxyalkanoates with other chemicals. Metabolic engineering. 43(Pt A): 29-36, 2017.
doi: 10.1016/j.ymben.2017.07.007
Lugg H, Sammons RL, Marquis PM, Hewitt CJ, Yong P, Paterson B.M, et al. Polyhydroxybutyrate accumulation by a Serratia sp. Biotechnology Letters, 30(3): 481-491, 2008.
doi: 10.1007/s10529-007-9561-9
Lupo A, Coyne S, Berendonk TU. Origin and evolution of antibiotic resistance: the common mechanisms of emergence and spread in water bodies. Frontiers Microbiology. 3: 18, 2012.
doi: 10.3389/fmicb.2012.00018
Martinez-Varela A, Cerro-Gálvez E, Auladell A, Sharma S, Moran MA, Kiene RP, Piña B, Dachs J, Vila-Costa M. Bacterial responses to background organic pollutants in the northeast subarctic Pacific Ocean. Environmental Microbiology. 23(8): 4532–4546, 2021.
doi: 10.1111/1462-2920.15646
Milan M, Carraro L, Fariselli P, Martino ME, Cavalieri D, Vitali F, Boffo L, Patarnello T, Bargelloni L, Cardazzo B. Microbiota and environmental stress: how pollution affects microbial communities in Manila clams. Aquatic toxicology (Amsterdam, Netherlands). 194: 195–207, 2018.
doi: 10.1016/j.aquatox.2017.11.019
Obruca S, Sedlacek, P, Koller M, Kucera D, Pernicova I.. Involvement of polyhydroxyalkanoates in stress resistance of microbial cells: Biotechnological consequences and applications. Biotechnology advances. 36(3): 856–870, 2018.
doi: 10.1016/j.biotechadv.2017.12.006
Patin NV, Pratte ZA, Regensburger M, Hall E, Gilde K, Dove ADM, Stewart FJ. Microbiome Dynamics in a Large Artificial Seawater Aquarium. Applied Environmental Microbiology. 84(10): e00179–18, 2018.
doi: 10.1128/AEM.00179-18
Ramaiah N, Kenkre VD, Verlecar XN. Marine environmental pollution stress detection throughdirect viable counts of bacteria. WaterResearch. 36(9): 2383–93, 2002.
doi: 10.1016/s0043-1354(01)00435-3
Rekhi P, Goswami M, Ramakrishna S, Debnath M. Polyhydroxyalkanoates biopolymers toward decarbonizing economy and sustainable future. Critical Review Biotechnology. 13: 1–25, 2021.
doi: 10.1080/07388551.2021.1960265
Rivera IN, Lipp EK, Gil A, Choopun N, Huq A, Colwell RR. Method of DNA extraction and application of multiplex polymerase chain reaction to detect toxigenic Vibrio cholerae O1 and O139 from aquatic ecosystems. Environmental Microbiology. 5(7): 599–606, 2003.
doi: 10.1046/j.1462-2920.2003.00443.x
RStudio Team (2020). RStudio: Integrated Development for R. RStudio, PBC, Boston, MA URL http://www.rstudio.com/.
Salman V, Amann R, Girnth AC, Polerecky L, Bailey JV, Høgslund S, Jessen G, Pantoja S, Schulz-Vogt HN. A single-cell sequencing approach to the classification of large, vacuolated sulfur bacteria. Systematic and applied microbiology. 34(4): 243-59, 2011.
doi: 10.1016/j.syapm.2011.02.001
Salman V, Bailey JV, Teske A. Phylogenetic and morphologic complexity of giant sulphur bacteria. Antonie Van Leeuwenhoek. 104(2): 169–86, 2013.
doi: 10.1007/s10482-013-9952-y
Shah S, Kumar A. Production and characterization of polyhydroxyalkanoates from industrial waste using soil bacterial isolates. Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology]. 52(2): 715–726, 2021.
doi: 10.1007/s42770-021-00452-z
Singh AK, Mallick N. Advances in cyanobacterial polyhydroxyalkanoates production. FEMS Microbiology Letter. 364(20), 2017.
doi: 10.1093/femsle/fnx189
Singh AK, Ranjana B, Mallick N. Pseudomonas aeruginosa MTCC 7925 as a biofactory for production of the novel SCL-LCL- PHA thermoplastic from non-edible oils. Current Biotechnology. 4:65–74, 2015.
Sneath PHA. Endospore-forming Gram-positive rods and cocci. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, 1986, vol 2, 2nd edn. Williams and Wilkins, Baltimore, pp 1104-1129.
Suriyamongkol P, Weselake R, Narine S, Moloney M, Shah S. Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants - a review. Biotechnology advances. 25(2): 148-75, 2007.
doi: 10.1016/j.biotechadv.2006.11.007
Tan GY, Chen CL, Ge L, Li L, Wang L, Zhao L, Mo Y, Tan SN, Wang JY. Enhanced gas chromatography-mass spectrometry method for bacterial polyhydroxyalkanoates analysis. Journal of bioscience and bioengineering. 117(3): 379-82, 2014.
doi: 10.1016/j.jbiosc.2013.08.020
Tejada Vélez CE, Afanador Franco F. Evaluación del riesgo debido a derrame de hidrocarburos en la Bahía de Tumaco. Boletín Científico Centro De Control De Contaminación Del Pacifico (Cerrado EN 2009), 10: 56–82, 2003.
https://ojs.dimar.mil.co/index.php/CCCP/article/view/361
Teske A, Nelson DC. The Genera Beggiatoa and Thioploca. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E. (eds) The Prokaryotes. Springer, New York, NY. pp 784-810, 2021.
doi: 10.1007/0-387-30746-X_27
Troschl C, Meixner K, Drosg B. Cyanobacterial PHA Production-Review of Recent Advances and a Summary of Three Years' Working Experience Running a Pilot Plant. Bioengineering (Basel). 4(2): 26, 2017.
doi: 10.3390/bioengineering4020026
Tsuge T, Hyakutake M, Mizuno K. Class IV polyhydroxyalkanoate (PHA) synthases and PHAproducing Bacillus. Appl Microbiol Biotechnol. 99(15): 6231-40, 2015.
doi: 10.1007/s00253-015-6777-9
Tufail S, Munir S, Jamil N. Variation analysis of bacterial polyhydroxyalkanoates production using saturated and unsaturated hydrocarbons. Brazilian journal of microbiology: [publication of the Brazilian Society for Microbiology]. 48(4): 629-636, 2017.
doi: 10.1016/j.bjm.2017.02.008
Urtuvia V, Villegas P, González M, Seeger M. Bacterial production of the biodegradable plastics polyhydroxyalkanoates. International journal of biological macromolecules. 70: 208-13, 2014.
doi: 10.1016/j.ijbiomac.2014.06.001
Wayne, PA.: Clinical and Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard, 9th ed CLSI document M07-A9. Clinical and Laboratory Standards Institute. 2012.
Weiner RM. Biopolymers from marine prokaryotes. Trends Biotechnology. 15(10): 390-4. 1997.
doi: 10.1016/S0167-7799(97)01099-8
Winkel M, Salman-Carvalho V, Woyke T, Richter M, Schulz-Vogt HN, Flood BE, Bailey JV, Mußmann M. Single-cell Sequencing of Thiomargarita Reveals Genomic Flexibility for Adaptation to Dynamic Redox Conditions. Frontiers Microbiology. 7: 964, 2016.
doi: 10.3389/fmicb.2016.00964
Zouch H, Cabrol L, Chiffet S, Tedetti M, Karray F, Zaghden H, Sayadi S, Quéméneur M. Effect of Acidic Industrial Effuent Release on Microbial Diversity and Trace Metal Dynamics During Resuspension of Coastal Sediment. Frontiers Microbiology. 9:3103, 2018.
doi: 10.3389/fmicb.2018.03103

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright (c) 2023 Pablo Fernández Izquierdo, Guido Ernesto Villota-Calvachi, Iván Otero-Ramírez, Sandra Patricia Hidalgo-Bonilla, Maira Alejandra Quiroz Cabrera, Jenny Dimelza Gomez Arrieta, Edith Mariela Burbano Rosero