Published Jun 23, 2023


Google Scholar
Search GoogleScholar

Pablo Fernández Izquierdo

Guido Ernesto Villota-Calvachi

Iván Otero-Ramírez

Sandra Patricia Hidalgo-Bonilla

Maira Alejandra Quiroz Cabrera

Jenny Dimelza Gomez Arrieta

Edith Mariela Burbano Rosero



Introduction. Polyhydroxyalkanoates (PHA) are a family of polyesters than comprise > 100 types of homo and heteropolymers that can be produced from renewable carbon sources by microorganisms, making it a sustainable and environmentally friendly material as substituent of plastics. Currently, the production of the biopolymers is not competitive in terms of cost and yield comparatively with synthetic polymers; however, such production by different bacterial strains may provide economic and ecological viability if there are investments in this area, and there are evidence that bioplastic accumulates antibiotic resistance genes (ARGs) and metal resistance genes (MRGs) in marine sediments. Objective. The aim of this work was to isolate and characterize molecularly and biochemically PHA-producing bacteria of water samples obtained from five sites (gas stations) in coastal regions of Tumaco Island, Nariño-Colombia, and determinate the antimicrobial susceptibility of isolates because the biological role goes beyond their storage function, since they presence in cytoplasm enhances stress resistance of microorganisms. Materials and methods. Bacterial colonies were isolated from samples water. A viable colony staining method using Nile red was used to screen for PHA-producing bacteria. Colonies were isolated, characterized via biochemical, microbial, and molecular methods, and tested for antimicrobial susceptibility and fermentation. The crude extract was analyzed by GC-MS/MS techniques. Results. More than thirty-eight strains were identified as potential PHA-positive isolates from this screening approach but, just one isolated was viable in PHA production (T2-25A). All isolates were resistant to metronidazole, ampicillin, trimethoprim sulfamethoxazole, cephalothin, ceftriaxone, and cefazolin, and 27:3 % of isolates were resistant to novobiocin. Conclusions. One promising PHA-producing isolate was obtained. Nevertheless, this information will complement future studies of the conditions necessary to produce PHA. Moreover, antibiotic resistance data have attracted attention, especially because of the origin of the source waters of the isolates.

1. Alsaadi A, Ganesen SSK, Amelia TSM, Moanis R, Peeters E, Vigneswari S, Bhubalan K. Polyhydroxyalkanoate (PHA) Biopolymer Synthesis by Marine Bacteria of the Malaysian Coral Triangle Region and Mining for PHA Synthase Genes. Microorganisms, 10(10): 2057, 2022.
doi: 10.3390/microorganisms10102057
2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. Journal of molecular biology, 215(3): 403–410, 1990.
doi: 10.1016/S0022-2836(05)80360-2
3. Biemer JJ. Antimicrobial susceptibility testing by the Kirby-Bauer disc difusion method. Annals of Clinical and Laboratory Science. 3(2): 135–40, 1973.
4. Blair JM, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJ. Molecular mechanisms of antibiotic resistance. Nature reviews. Microbiology, 13(1): 42–51, 2015.
doi: 10.1038/nrmicro3380
5. Blanco FG, Hernández N, Rivero-Buceta V, Maestro B, Sanz JM, Mato A, Hernández-Arriaga AM, Prieto MA. From Residues to Added-Value Bacterial Biopolymers as Nanomaterials for Biomedical Applications. Nanomaterials (Basel). 11(6): 1492, 2021.
doi: 10.3390/nano11061492
6. Bonilla Urrutia NS. Comunidad fitoplanctónica presente en la Bahía de Tumaco IIAP 2018. V1.1. Instituto de Investigaciones Ambientales del Pacífico John Von Neumann – IIAP. Dataset/Occurrence. 2022.
doi: 10.15472/cayjuj
7. Braunegg G, Lefebvre G, Genser KF. Polyhydroxyalkanoates, biopolyesters from renewable resources: Physiological and engineering aspects. Journal of Biotechnology, 65: 127–161, 1998.
8. Bunse C, Pinhassi J. Marine Bacterioplankton Seasonal Succession Dynamics. Trends in microbiology 25(6): 494-505, 2017.
doi: 10.1016/j.tim.2016.12.013
9. Ciebiada M, Kubiak K, Daroch M. Modifying the Cyanobacterial Metabolism as a Key to Eficient Biopolymer Production in Photosynthetic Microorganisms. International journal of molecular sciences, 21(19): 7204, 2020.
doi: 10.3390/ijms21197204
10. Clinical and Laboratory Standards Institute, 2009. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. Nineteenth informational supplement M100–S19.
11. Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, Brown CT, Porras-Alfaro A, Kuske CR, Tiedje JM. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Research. 42(Database issue): 633–642, 2014.
doi: 10.1093/nar/gkt1244
12. Cristea A, Baricz A, Leopold N, Floare CG, Borodi G, Kacso I, Tripon S, Bulzu PA, Andrei AȘ, Cadar O, Levei EA, Banciu HL. Polyhydroxybutyrate production by an extremely halotolerant Halomonas elongata strain isolated from the hypersaline meromictic Fără Fund Lake (Transylvanian Basin, Romania). Journal of applied microbiology. 125(5): 1343–1357, 2018.
doi: 10.1111/jam.14029
13. Dhangdhariya JH, Dubey S, Trivedi HB, Pancha I, Bhatt JK, Dave BP, Mishra S. Polyhydroxyalkanoate from marine Bacillus megaterium using CSMCRI’s Dry Sea Mix as a novel growth medium. International journal of biological macromolecules. 76: 254–261, 2015.
doi: 10.1016/j.ijbiomac.2015.02.009
14. Diéguez AL, Balboa S, Romalde JL. Halomonas borealis sp. Nov. and Halomonas niordiana sp. Nov., two new species isolated from seawater. Systematic and applied microbiology. 43(1): 126040, 2020.
doi: 10.1016/j.syapm.2019.126040
15. Di Cesare A, Pinnell L J, Brambilla D, Elli G, Sabatino R, Sathicq MB, Corno G, O’ Donnell C, & Turner JW. Bioplastic accumulates antibiotic and metal resistance genes in coastal marine sediments. Environmental pollution (Barking, Essex: 1987), 291: 118161, 2021.
doi: 10.1016/j.envpol.2021.118161
16. El-Malek FA, Khairy H, Farag A, Omar S. The sustainability of microbial bioplastics, production, and applications. International journal of biological macromolecules. 157: 319-328, 2020.
doi: 10.1016/j.ijbiomac.2020.04.076
17. Fernández P, Ortiz FL, España JE. Caracterización de poli-(hidroxibutirato – co-hidroxivalerato) sintetizado por una cepa silvestre de Bacillus mycoides, FLB2. Revista centro de estudios en salud, 1(6): 1–10, 2005.
18. Giordano D. Bioactive Molecules from Extreme Environments. Marine Drugs. 18(12): 640, 2020.
doi: 10.3390/md18120640
19. Gomes Gradíssimo D, Pereira Xavier L, Valadares Santos A. Cyanobacterial Polyhydroxyalkanoates: A Sustainable Alternative in Circular Economy. Molecules. 25(18): 4331, 2020.
doi: 10.3390/molecules25184331
20. Gureeva MV, Belousova EV, Dubinina GA, Novikov AA, Kopitsyn DS, Grabovich MY. Thioflexithrix psekupsensis gen. nov., sp. nov., a filamentous gliding sulfur bacterium from the family Beggiatoaceae. International journal of systematic and evolutionary microbiology, 69(3): 798-804, 2019.
doi: 10.1099/ijsem.0.003240
21. Guzmán A, Ángela I, Zambrano Ortíz MM, Casanova-Rosero RF, Selvaraj, JJ, Martínez A. La condición ecológica de la bahía de Tumaco (Pacífico colombiano): evaluación de la calidad del agua y del fitoplancton. Boletín Científico CIOH, 32: 3–16, 2014.
doi: 10.26640/22159045.260
22. Hall CW, Mah TF. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiology Review. 41(3): 276–301, 2017.
doi: 10.1093/femsre/fux010
23. Han J, Wu LP, Hou J, Zhao D, Xiang H. Biosynthesis, characterization, and hemostasis potential of tailor-made poly(3-hydroxybutyrate-co-3-hydroxyvalerate) produced by Haloferax mediterranei. Biomacromolecules. 16(2): 578–588, 2015.
doi: 10.1021/bm5016267
24. Higuchi-Takeuchi M, Morisaki K, Numata K. A Screening Method for the Isolation of Polyhydroxyalkanoate-Producing Purple Non sulfur Photosynthetic Bacteria from Natural Seawater. Frontiers Microbiology. 7: 1509, 2016.
doi: 10.3389/fmicb.2016.01509
25. Huang P, Okoshi T, Mizuno S, Hiroe A, Tsuge T. Gas chromatography-mass spectrometry-based monomer composition analysis of medium-chain-length polyhydroxyalkanoates biosynthesized by Pseudomonas spp. Bioscience, biotechnology, and biochemistry. 82(9): 1615–1623, 2018.
doi: 10.1080/09168451.2018.1473027
26. Javaid H, Nawaz A, Riaz N, Mukhtar H, -Ul-Haq I, Shah KA, Khan H, Naqvi SM, Shakoor S, Rasool A, Ullah K, Manzoor R, Kaleem I, Murtaza G. Biosynthesis of Polyhydroxyalkanoates (PHA) by the Valorization of Biomass and Synthetic Waste. Molecules. 25(23): 5539, 2020.
doi: 10.3390/molecules25235539
27. Koller M, Maršálek L, de Sousa Dias MM, Braunegg G. Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. New Biotechnology. 37(Pt A): 24–38, 2017.
doi: 10.1016/j.nbt.2016.05.001
28. Kumar A, Srivastava JK, Mallick N, Singh AK. Commercialization of bacterial cell factories for the sustainable production of polyhydroxyalkanoate thermoplastics: progress and prospects. Recent patents on biotechnology. 9: 4–21, 2015.
doi: 10.2174/2211550104666150615211414
29. Li T, Elhadi D, Chen GQ. Co-production of microbial polyhydroxyalkanoates with other chemicals. Metabolic engineering. 43(Pt A): 29-36, 2017.
doi: 10.1016/j.ymben.2017.07.007
30. Lugg H, Sammons RL, Marquis PM, Hewitt CJ, Yong P, Paterson B.M, et al. Polyhydroxybutyrate accumulation by a Serratia sp. Biotechnology Letters, 30(3): 481-491, 2008.
doi: 10.1007/s10529-007-9561-9
31. Lupo A, Coyne S, Berendonk TU. Origin and evolution of antibiotic resistance: the common mechanisms of emergence and spread in water bodies. Frontiers Microbiology. 3: 18, 2012.
doi: 10.3389/fmicb.2012.00018
32. Martinez-Varela A, Cerro-Gálvez E, Auladell A, Sharma S, Moran MA, Kiene RP, Piña B, Dachs J, Vila-Costa M. Bacterial responses to background organic pollutants in the northeast subarctic Pacific Ocean. Environmental Microbiology. 23(8): 4532–4546, 2021.
doi: 10.1111/1462-2920.15646
33. Milan M, Carraro L, Fariselli P, Martino ME, Cavalieri D, Vitali F, Boffo L, Patarnello T, Bargelloni L, Cardazzo B. Microbiota and environmental stress: how pollution affects microbial communities in Manila clams. Aquatic toxicology (Amsterdam, Netherlands). 194: 195–207, 2018.
doi: 10.1016/j.aquatox.2017.11.019
34. Obruca S, Sedlacek, P, Koller M, Kucera D, Pernicova I.. Involvement of polyhydroxyalkanoates in stress resistance of microbial cells: Biotechnological consequences and applications. Biotechnology advances. 36(3): 856–870, 2018.
doi: 10.1016/j.biotechadv.2017.12.006
35. Patin NV, Pratte ZA, Regensburger M, Hall E, Gilde K, Dove ADM, Stewart FJ. Microbiome Dynamics in a Large Artificial Seawater Aquarium. Applied Environmental Microbiology. 84(10): e00179–18, 2018.
doi: 10.1128/AEM.00179-18
36. Ramaiah N, Kenkre VD, Verlecar XN. Marine environmental pollution stress detection throughdirect viable counts of bacteria. WaterResearch. 36(9): 2383–93, 2002.
doi: 10.1016/s0043-1354(01)00435-3
37. Rekhi P, Goswami M, Ramakrishna S, Debnath M. Polyhydroxyalkanoates biopolymers toward decarbonizing economy and sustainable future. Critical Review Biotechnology. 13: 1–25, 2021.
doi: 10.1080/07388551.2021.1960265
38. Rivera IN, Lipp EK, Gil A, Choopun N, Huq A, Colwell RR. Method of DNA extraction and application of multiplex polymerase chain reaction to detect toxigenic Vibrio cholerae O1 and O139 from aquatic ecosystems. Environmental Microbiology. 5(7): 599–606, 2003.
doi: 10.1046/j.1462-2920.2003.00443.x
39. RStudio Team (2020). RStudio: Integrated Development for R. RStudio, PBC, Boston, MA URL
40. Salman V, Amann R, Girnth AC, Polerecky L, Bailey JV, Høgslund S, Jessen G, Pantoja S, Schulz-Vogt HN. A single-cell sequencing approach to the classification of large, vacuolated sulfur bacteria. Systematic and applied microbiology. 34(4): 243-59, 2011.
doi: 10.1016/j.syapm.2011.02.001
41. Salman V, Bailey JV, Teske A. Phylogenetic and morphologic complexity of giant sulphur bacteria. Antonie Van Leeuwenhoek. 104(2): 169–86, 2013.
doi: 10.1007/s10482-013-9952-y
42. Shah S, Kumar A. Production and characterization of polyhydroxyalkanoates from industrial waste using soil bacterial isolates. Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology]. 52(2): 715–726, 2021.
doi: 10.1007/s42770-021-00452-z
43. Singh AK, Mallick N. Advances in cyanobacterial polyhydroxyalkanoates production. FEMS Microbiology Letter. 364(20), 2017.
doi: 10.1093/femsle/fnx189
44. Singh AK, Ranjana B, Mallick N. Pseudomonas aeruginosa MTCC 7925 as a biofactory for production of the novel SCL-LCL- PHA thermoplastic from non-edible oils. Current Biotechnology. 4:65–74, 2015.
45. Sneath PHA. Endospore-forming Gram-positive rods and cocci. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, 1986, vol 2, 2nd edn. Williams and Wilkins, Baltimore, pp 1104-1129.
46. Suriyamongkol P, Weselake R, Narine S, Moloney M, Shah S. Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants - a review. Biotechnology advances. 25(2): 148-75, 2007.
doi: 10.1016/j.biotechadv.2006.11.007
47. Tan GY, Chen CL, Ge L, Li L, Wang L, Zhao L, Mo Y, Tan SN, Wang JY. Enhanced gas chromatography-mass spectrometry method for bacterial polyhydroxyalkanoates analysis. Journal of bioscience and bioengineering. 117(3): 379-82, 2014.
doi: 10.1016/j.jbiosc.2013.08.020
48. Tejada Vélez CE, Afanador Franco F. Evaluación del riesgo debido a derrame de hidrocarburos en la Bahía de Tumaco. Boletín Científico Centro De Control De Contaminación Del Pacifico (Cerrado EN 2009), 10: 56–82, 2003.
49. Teske A, Nelson DC. The Genera Beggiatoa and Thioploca. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E. (eds) The Prokaryotes. Springer, New York, NY. pp 784-810, 2021.
doi: 10.1007/0-387-30746-X_27
50. Troschl C, Meixner K, Drosg B. Cyanobacterial PHA Production-Review of Recent Advances and a Summary of Three Years' Working Experience Running a Pilot Plant. Bioengineering (Basel). 4(2): 26, 2017.
doi: 10.3390/bioengineering4020026
51. Tsuge T, Hyakutake M, Mizuno K. Class IV polyhydroxyalkanoate (PHA) synthases and PHAproducing Bacillus. Appl Microbiol Biotechnol. 99(15): 6231-40, 2015.
doi: 10.1007/s00253-015-6777-9
52. Tufail S, Munir S, Jamil N. Variation analysis of bacterial polyhydroxyalkanoates production using saturated and unsaturated hydrocarbons. Brazilian journal of microbiology: [publication of the Brazilian Society for Microbiology]. 48(4): 629-636, 2017.
doi: 10.1016/j.bjm.2017.02.008
53. Urtuvia V, Villegas P, González M, Seeger M. Bacterial production of the biodegradable plastics polyhydroxyalkanoates. International journal of biological macromolecules. 70: 208-13, 2014.
doi: 10.1016/j.ijbiomac.2014.06.001
54. Wayne, PA.: Clinical and Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard, 9th ed CLSI document M07-A9. Clinical and Laboratory Standards Institute. 2012.
55. Weiner RM. Biopolymers from marine prokaryotes. Trends Biotechnology. 15(10): 390-4. 1997.
doi: 10.1016/S0167-7799(97)01099-8
56. Winkel M, Salman-Carvalho V, Woyke T, Richter M, Schulz-Vogt HN, Flood BE, Bailey JV, Mußmann M. Single-cell Sequencing of Thiomargarita Reveals Genomic Flexibility for Adaptation to Dynamic Redox Conditions. Frontiers Microbiology. 7: 964, 2016.
doi: 10.3389/fmicb.2016.00964
57. Zouch H, Cabrol L, Chiffet S, Tedetti M, Karray F, Zaghden H, Sayadi S, Quéméneur M. Effect of Acidic Industrial Effuent Release on Microbial Diversity and Trace Metal Dynamics During Resuspension of Coastal Sediment. Frontiers Microbiology. 9:3103, 2018.
doi: 10.3389/fmicb.2018.03103
How to Cite
Fernández Izquierdo, P., Villota-Calvachi, G. E., Otero-Ramírez, I., Hidalgo-Bonilla, S. P., Quiroz Cabrera, M. A., Gomez Arrieta, J. D., & Burbano Rosero, E. M. (2023). Isolation and characterization of polyhydroxyalkanoate-producing bacteria from seawater samples (Tumaco). Universitas Scientiarum, 28(2), 141–163.
Applied Microbiology

Most read articles by the same author(s)