Published Aug 15, 2021



PLUMX
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar


Deisy L. Guerrero-Ceballos https://orcid.org/0000-0001-8960-8538

Eduardo Ibargüen-Mondragón https://orcid.org/0000-0001-6308-1344

Pablo Fernández-Izquierdo https://orcid.org/0000-0003-0158-8398

Jhonatan Pinta-Melo

Edith Mariela Burbano-Rosero https://orcid.org/0000-0002-4021-2660

##plugins.themes.bootstrap3.article.details##

Abstract

Effluent pollution with Cr (VI) is a worldwide environmental problem. In the Pasto River (southeastern, Colombia), previous studies reported contamination with this metal at points near tanneries. To establish the role of Bacillus thuringiensis in Cr (VI) reduction in water from Pasto River, experiments were carried out with untreated Pasto River water (treatment 1), sterile Pasto River water inoculated with B. thuringiensis (treatment 2), and unsterilized Pasto River water inoculated with B. thuringiensis (treatment 3). All experiments were conducted in bioreactors with a controlled temperature of 20 °C and constant agitation for 156 h. Samples of 20 mL were taken every 12 h from each treatment to track Cr (VI) reduction levels and to confirm microorganism identity via molecular methods involving denaturing gradient gel electrophoresis (DGGE), restriction enzyme digestion profiles (RFLP), and bioinformatic analysis. Cr (VI) reduction was higher in treatment 3 (99:42 %) as opposed to treatment 2 (76:12 %) and treatment 1 (74:46 %). The molecular identity of B. thuringiensis was determined via sequencing of the 16SrRNA gene, and RFLP assessments in all three treatments revealed B. thuringiensis profiles. Since B. thuringiensis was present in all three treatments trough time, Cr (VI) reduction can be attributed to this bacterium.

Keywords

Heavy metals, Chromium reduction, Cr reducing bacteria, DGGE (DeCS)Metales pesados, Cromo hexavalente, Remoción de contaminantes, Biorreducción, Bacterias reductoras de cromo

References
[1] Mädler S, Sun F, Tat C, Sudakova N, Drouin P, Tooley R. Trace-Level Analysis of Hexavalent Chromium in Lake Sediment Samples Using Ion Chromatography Tandem Mass Spectrometry, Journal of Environmental Protection, 7: 422–434, 2016.
doi: 10.4236/jep.2016.73037

[2] Xie Y, Holmgren S, Andrews D, Wolfe M. Evaluating the impact of the US National toxicology program: A case study on hexavalent chromium, Environmental health perspectives, 125: 181–188, 2017.
doi: 10.1289/EHP21

[3] Pineda M, Rodríguez A. Metales pesados (Cd, Cr y Hg): su impacto en el ambiente y posibles estrategias biotecnológicas para su remediación, Revista I3+, Investigación, Innovación, Ingeniería, 2(2): 82–112, 2015.
doi: 10.24267/23462329.113

[4] Williams P, Botes E, Maleke M, Ojo A, DeFlaun M, Howell J. Effective bioreduction of hexavalent chromium–contaminated water in fixed-film bioreactors, Water SA, 40(3): 549–554, 2014.
doi: 10.4314/wsa.v40i3.19

[5] Oves M., Khan M, Zaidi A. Chromium reducing and plant growth promoting novel strain Pseudomonas aeruginosa OSG41 enhance chickpea growth in chromium amended soils, European journal of soil biology, 56: 72–83, 2013.
doi: 10.1016/j.ejsobi.2013.02.002

[6] Hossan S, Hossain S, Islam MR, Kabir MH, Ali S, Islam MS, Mahmud ZH. Bioremediation of Hexavalent Chromium by Chromium Resistant Bacteria Reduces Phytotoxicity, Revista internacional de investigación ambiental y salud pública, 17: 6013, 2020.
doi: 10.3390/ijerph17176013

[7] Mishra S, Chen S, Saratale G, Saratale R, Ferreira L, Bilal M., Bharagava. Reduction of hexavalent chromium by Microbacterium paraoxydans isolated from tannery wastewater and characterization of its reduced products, Journal of Water Process Engineering, 39: 101748, 2021.
doi: 10.1016/j.jwpe.2020.101748

[8] Karthik C, Elangovan N, Kumar TS, Govindharaju S, Barathi S, Oves M, Arulselvi PI. Characterization of multifarious plant growth promoting traits of rhizobacterial strain AR6 under Chromium (VI) stress, Microbiological Research, 204: 65–71, 2017.
doi: 10.1016/j.micres.2017.07.008

[9] Arango C, Alzate M. Proyecto gestión ambiental en la industria de curtiembre en Colombia, Pasto, Bogotá DC: Centro Nacional de Producción mas Limpia-Sistema de Referenciación Ambiental (SIRAC) para el Sector Curtiembre en Colombia. 2004.

[10] Guerrero-Ceballos DL, Pinta-Melo J, Fernández-Izquierdo P, Ibargüen-Mondragón E, Hidalgo-Bonilla SP, Burbano-Rosero EM. Eficiencia en la reducción de Cromo por una bacteria silvestre en un tratamiento tipo Batch utilizando como sustrato agua residual del municipio de Pasto, Colombia, Universidad y Salud, 19(1): 102–115, 2017.
doi: 10.22267/rus.171901.74

[11] Fernández M, Le Borgne S. Electroforesis en gradiente denaturante. En: Cornejo A, Serrato B, Rendón, Rocha MG, Herramientas moleculares aplicadas en ecología: aspectos teóricos y prácticos, México, D.F, Primera edición: 14–17, 2014.

[12] American Public Health, Association, American Water Works, Federation, Water Environment. Standards Methods for the examination of water and wastewater, Chromiun 117A Hexavalente chromiun, In Health AP, Association AWW, Federation WE, 1999.

[13] Burbano-Rosero M, Caetano de Almeida B, Otero-Ramírez I. Manual de Biología Molecular – Procedimientos Básicos, Manual de Biología Molecular – Procedimientos Básicos, Pasto, Colombia, 2017: 13–50, 2017.

[14] Sambrook J, Fritschi EF, Maniatis T. Molecular cloning: a laboratorymanual, Cold Spring Harbor Laboratory Press, New York, 1989.

[15] Brosius J, Dull TJ, Sleeter D, Noller H. Gene organization and primary structure of ribosomal RNA operon from Escherichia coli, Journal of molecular biology, 148: 107–127, 198.
doi: 10.1016/0022-2836(81)90508-8

[16] Robalino S, Wilson C. Identificación molecular del complejo Burkholderia cepacia, bacteria productora de antibióticos, mediante PCR en tiempo real, Disertación Tesis, Universidad Politécnica Salesiana, Quito. 2017.

[17] Genovese M, Crisafi F, Denaro R, Cappell S, Russo D, Calogero R, Genovese L. Effective bioremediation strategy for rapid in situ clean up of anoxic marine sediments in mesocosm oil spill simulation, Frontiers in microbiology, 5(162): 1–14, 2014.
doi: 10.3389/fmicb.2014.00162

[18] Barton LL, Northup DE. Microbes at work in nature: biomineralization and microbial weathering, Microbial Ecology, 2011: 299–326, 2011.

[19] Faissal , Ouazzani N, Parrado J, Dary M, Manyani H, Morgado B. Impact of fertilization by natural manure on the microbial quality of soil: Molecular Approach, Saudi journal of biological sciences, 24(6): 1437–144, 2017.
doi: 10.1016/j.sjbs.2017.01.005

[20] Shahsavari E, Aburto-Medina A, Khudur LS, Taha M, Ball AS. Microbial Ecology to Microbial Ecotoxicology. En Cravo Laureau C, Cagnon C, Lauga B, Duran R, In Microbial Ecotoxicology, New York: Springer, 17–38, 2017.
doi: 10.1007/978-3-319-61795-4

[21] Fernández M, Le-Borgne S. Electroforesis en gel con gradiente desnaturalizante, En: Cornejo R, Serrato D, Aguilar B, Munive M, Herramientas moleculares aplicadas en ecología: Aspectos teóricos y prácticos, SEMARNT INEC UAM-I, 149–170, 2014.

[22] Neilson J, Jordan F, Maier R. Analysis of artifacts suggests DGGE should not be used for quantitative diversity analysis, Journal of Microbiological Methods, 92(2013): 256–263, 2013.
doi: 10.1016/j.mimet.2012.12.021

[23] Banerjee S, Misra A, Chaudhury S, Dam B. A Bacillus strain TCL isolated from Jharia coalmine with remarkable stress responses, chromium reduction capability and bioremediation potential, Journal of hazardous materials, 367: 215–223, 2019.
doi: 10.1016/j.jhazmat.2018.12.038

[24] Buckhout-White S, Person C, Medintz IL, Goldman ER. Restriction Enzymes as a Target for DNA-Based Sensing and Structural Rearrangement, ACS Omega, 3(1): 495–502, 2018.
doi: 10.1021/acsomega.7b01333

[25] Di Felice F, Micheli G, Camilloni G. Restriction enzymes and their use in molecular biology: An overview, Journal of biosciences, 44(2): 38, 2019.
doi: 10.1007/s12038-019-9856-8

[26] Cruz-Leyva M, Zamudio-Maya M, Corona-Cruz A, González- de la Cruz J, Rojas-Herrera R. Importancia y estudios de las comunidades microbianas en los recursos y productos pesqueros, Ecosistemas y recursos agropecuarios, 2(4): 99–115, 2015.

[27] Chai L, Yang Z, Shi Y, Liao Q, Min X, Li Q, Liang L. Cr (VI)-reducing strain and its application to the microbial remediation of Cr (VI)-contaminated soils, In Twenty years of research and development on soil pollution and remediation in China, 2018: 487–498, 2018.
doi: 10.1007/978-981-10-6029-8_29

[28] Ma L, Xu J, Chen N, Li M, Feng C. Microbial reduction fate of chromium (Cr) in aqueous solution by mixed bacterial consortium, Ecotoxicology and environmental safety, 170: 763–770, 2019.
doi: 10.1016/j.ecoenv.2018.12.041

[29] Lin H, You S, Liu L. Characterization of Microbial Communities, Identification of Cr(VI) Reducing Bacteria in Constructed Wetland and Cr(VI) Removal Ability of Bacillus cereus, Scientific Reports, 9: 12873, 2019.
doi: 10.1038/s41598-019-49333-4

[30] Yin P, Liu X, Liao J, Hu X. Effects of Cadmium Stress on Microbial Community Diversity in Soil Potted With Sasa Argenteastriatus, In IOP Conference Series: Earth and Environmental Science, 300: 052051, 2019.
doi: 10.1088/1755-1315/300/5/052051
How to Cite
Guerrero-Ceballos, D. L., Ibargüen-Mondragón, E., Fernández-Izquierdo, P., Pinta-Melo, J., & Burbano-Rosero, E. M. (2021). Molecular techniques for the assessment of Cr (VI) reduction by Bacillus thuringiensis. Universitas Scientiarum, 26(2), 243–259. https://doi.org/10.11144/Javeriana.SC26-2.mtft
Section
Applied Microbiology

Most read articles by the same author(s)