##plugins.themes.bootstrap3.article.main##


Fredy Alejandro Orjuela Guerrero

John Jairo Olaya Florez

José Edgar Alfonso Orjuela

Abstract

Objective: In this work, niobium carbide (NbC) coatings were deposited on substrates of the tool steels AISI H13 and AISI D2 using thermo-reactive deposition/diffusion (TRD) in order to analyze their behavior against corrosion in a saline environment. Materials and methods: The niobium carbides were obtained using salt baths composed of borax pentahydrate, aluminum and ferroniobium. This mixture was heated at 1050 °C for 4 hours. The chemical composition was determined by X-ray fluorescence (XRF). The coatings were morphologically characterized using scanning electron microscopy (SEM), the crystal structure was analyzed using X-ray diffraction (XRD), and the electrochemical behavior was studied using potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS). Results and discussion: The XRF analysis indicated that the coatings contained 87.476 wt% Nb and 51.943 wt% Nb for the D2-substrate and the H13-substrate, respectively. The SEM images revealed that the morphology of the surface of the coatings was homogeneous. The XRD analysis established that the coatings were polycrystalline, and the electrochemical tests established that the corrosion resistance increased slightly in the covered substrates with respect to the uncoated steels, with the best results being obtained in the layers of niobium carbide deposited on AISI D2 steel. Conclusions: The analysis of corrosion resistance revealed that the coatings prepared on D2 steel have a higher corrosion resistance because they have fewer surface imperfections, which causes the coating to exhibit a dielectric behavior.

##plugins.themes.bootstrap3.article.details##

Keywords

Coating, Carbides, Niobium, Corrosion

References
[1] T. Arai, and S. Harper, (1991). Thermoreactive Deposition/Diffusion Process for Surface Hardening of Steels. ASM Handbook: Heat Treatment, 4, pp. 1000-1013. Available: http://www.tool-dynamics.com/literature/papers/004.php
[2] T. Arai, and N. Komatsu, “Carbide Coating Process by Use of Salt Bath and its Application to Metal Forming Dies”, in Proceedings of the 18th International Machine Tool Design and Research Conference, 14-16 Sept 1977, pp. 225-231.
[3] T. Arai, “Carbide Coating Process by Use of Molten Borax Bath in Japan”, J. Heat Treat., Vol 18 (No. 2), 1979, pp. 15-22. ISSN: 0190-9177. http://link.springer.com/article/10.1007/BF02833234
[4] T. Arai, H. Fujita, Y. Sugimoto, et al. “Vanadium Carbonitride Coating by Immersing into Low Temperature Salt Bath”, in Heat Treatment and Surface Engineering, George Krauss, Ed., ASM International, 1988, pp. 49-53. ISSN: 1749-5148.
[5] T. Arai, H. Fujita, Y. Sugimoto, et al. “Diffusion carbide coatings formed in molten borax systems.” J. Mater. Eng. 9 (2) (1987) pp. 183-189. ISSN: 1059-9495. Available: http://link.springer.com/article/10.1007/BF02833709#page-1
[6] H. C. Child, S. A. Plumb, and J. J. McDermott, “Proc. Int. Conf. on Heat Treatment”, n. 310, London, UK, The Metals Society, May, 1984, pp 5.1. ISSN: 0190-9177

[7] F.E. Castillejo, D. Marulanda, and J. J. Olaya, (2013, Jul.) “Estudio de recubrimientos de carburos ternarios de niobio-vanadio producidos sobre acero D2 usando la técnica de deposición por difusión Termorreactiva,” Revista Latinoamericana de Metalurgia y Materiales, vol. 34, no. 2, pp. 1–10. Available: http://www.rlmm.org/ojs/index.php/rlmm/article/view/464
[8] A. Orjuela, R. Rincón, and J. J. Olaya, (2014, Nov.) “Corrosion resistance of niobium carbide coatings produced on AISI 1045 steel via thermo-reactive diffusion deposition”. Surface and Coatings Technology, vol. 259, pp. 667-675. http://www.sciencedirect.com/science/article/pii/S0257897214009104
[9] C. K.N. Oliveira, C. L. Benassi, and L.C. Casteletti, (2006, Oct.) “Evaluation of hard coatings obtained on AISI D2 steel by thermo-reactive deposition treatment”. Surface & Coatings Technology 201 pp. 1880–1885. ISSN: 0257-8972. http://www.sinab.unal.edu.co:2053/science/article/pii/S0257897206002787.
[10] M. G. Gee, A. Gant, I. Hutchings, et al. (2003, Aug.) “Progress towards standardization of ball cratering”. Wear 255. ISSN: 0043-1648. http://www.sinab.unal.edu.co:2053/science/article/pii/S0043164803000917.
[11] S. Sen. and U. Sen, (2008, Feb.) “Sliding wear behavior of niobium carbide coated AISI 1040 steel”. Wear 264. pp. 219–225. ISSN: 0043-1648. http://www.sinab.unal.edu.co:2053/science/article/pii/S0043164807004887.
[12] C. K.N. Oliveira, C. L. Benassi, and L.C. Casteletti, (2006, Apr.) “Micro-abrasive wear test of niobium carbide layers produced on AISI H13 and M2 steels”. Surface & Coatings Technology 201, pp. 1880–1885. ISSN: 0257-8972. http://www.sciencedirect.com.ezproxy.unal.edu.co/science/article/pii/S0257897205006420
[13] X.S. Fan, Z. G. Yang, C. Zhang, et al. (2012, Sept.) “Thermo-reactive deposition processed vanadium carbide coating: growth kinetics model and diffusion mechanism”. Surface & Coatings Technology 208. 80–86. ISSN: 0257-8972. http://www.sinab.unal.edu.co:2053/science/article/pii/S0257897212007852.
[14] X.S. Fan, Z. G. Yang, C. Zhang, et al. (2010, Oct.). “Evaluation of vanadium carbide coatings on AISI H13 obtained by thermo-reactive deposition/diffusion technique”. Surface & Coatings Technology 205. pp. 641–646. ISSN: 0257-8972. http://www.sinab.unal.edu.co:2053/science/article/pii/S0257897210005876.
[15] S. T. Oyama, “The chemistry of transition metal carbides and nitrides”, Blackie Academic & Professional, 1996. ISBN 0-7514-0365-2. http://www.books.google.com›... › Chemistry › General.
[16] F. Castillejo, (2012, Jun.) “Recubrimientos de VC y NbC producidos por TRD: tecnología económica, eficiente y ambientalmente limpia”. Ciencia e ingeniería neogranadina, vol 22-1, pp. 95-105, Bogotá, ISSN 0124-8170. http://www.umng.edu.co/documents/10162/1073246/Articulo_6.pdf.
[17] H. Suarez, “Evaluación del comportamiento en condiciones de operación de aceros de baja y media aleación con recubrimiento superficial por el proceso deposición difusión termorreactiva (TRD)”. M. S. Thesis. Universidad Nacional de Colombia. Bogotá. 2003. http://www.postmat.unal.edu.co/tesismaestriafinal.html
[18] J. Mendoza, R. Durán, and J. Genescá, “Espectroscopia de impedancia electroquímica en corrosión, en Técnicas electroquímicas para el estudio de la corrosión”, Juan Genescá Llongueras, Editor. 2008: Querétaro, México. ISBN UNAM 970-32-0540-2. http://depa.fquim.unam.mx/labcorr/libro/Manual-EIS-IMP-UNAM.PDF.
[19] C. Aguzzoli, C. A. Figueroa, F. S. de Souza, et al. (2012, Jan.) “Corrosion and nanomechanical properties of vanadium carbide thin film coatings of tool steel”. Surface & Coatings Technology 206. pp. 2725–2731. ISSN: 0257-8972. http://www.sinab.unal.edu.co:2053/science/article/pii/S0257897211011868
[20] A. Guzman, “Evaluación de la resistencia a la corrosión de sistemas de recubrimientos con altos sólidos por medio de espectroscopía de impedancia electroquímica’’. Tesis de M. S. Thesis, Facultad de Minas. 2011, Universidad Nacional de Colombia, Medellín. pp. 1-35. http://www.bdigital.unal.edu.co/4063/4/200767791.2011_1.pdf
[21] C. Liu, Q. Bi, A. Leyland, et al. (2003, Jun.) “An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0.5 N NaCl aqueous solution: Part I. Establishment of equivalent circuits for EIS data modeling”. Corrosion Science, 45(6): pp.1243-1256. ISSN: 0010-938X. www.sciencedirect.com/science/article/pii/S0010938X02002135
[22] S. D. Cramer and B. S. Covino, "ASM Handbook, Volume 13A - Corrosion: Fundamentals, Testing, and Protection," Ed: ASM International, 2003. ISBN: 0871707055. http://www.sinab.unal.edu.co:3021/SUBSCRIPTION/filtrexx40.cgi?REDLINE_PAGES/G192.htm
[23] C. Liu, Q. Bi, A. Leyland, et al. (2003, Jun.) “An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0.5 N NaCl aqueous solution: Part II.: EIS interpretation of corrosion behavior”. Corrosión Science. 45(6): pp. 1257-1273. ISSN: 0010-938X. http://www.sciencedirect.com/science/article/pii/S0010938X02002147
[24] L. Velazco, “Producción, caracterización microestructural y estudio de la resistencia a la corrosión de recubrimientos nanoestructurados de NbxSiyNz depositados con el sistema de UBM”. M.S. thesis. Dept. Mechanical and Mecatronic Eng., Universidad Nacional de Colombia., Bogotá, 2011: p. 138. http://www.bdigital.unal.edu.co/4319/
[25] M. Torres, "Estudio comparativo del proceso de corrosión en recubrimientos cerámicos, metálicos y orgánicos mediante técnicas electroquímicas," M.S. thesis. Dept. Mechanical and Mecatronic Eng., Universidad Nacional de Colombia, Bogotá, 2010. http://www.bdigital.unal.edu.co/3053/
[26] D. Turcio-Ortega, S. E. Rodil, and S. Muhl, (2009, Nov.) "Corrosion behavior of amorphous carbon deposit in 0.89% NaCl by electrochemical impedance spectroscopy" Diamond and Related Materials, vol. 18, pp. 1360-1368, ISSN: 0925-9635 http://www.sinab.unal.edu.co:2053/science/article/pii/S0925963509002301
How to Cite
Orjuela Guerrero, F., Olaya Florez, J., & Alfonso Orjuela, J. (2018). Niobium carbide coatings produced on tool steels via thermo-reactive diffusion. Ingenieria Y Universidad, 22(2). https://doi.org/10.11144/Javeriana.iyu22-2.nccp
Section
Bioengineering and chemical engineering
Most read articles by the same author(s)