Published Jun 12, 2017


Google Scholar
Search GoogleScholar

Gina Paola Barrera-Castro, MSc

Luz Marina Ocampo-Carmona, PhD

John Jairo Olaya-Florez, PhD



Introduction: Three materials were made with mixtures of virgin expanded polystyrene (EPS) grade S3 and recycled material from multipurpose EPS packaging. Thee latter was subjected to washing and grinding in a blade mill, with percentages by weight of recycled material 10, 15, and 20%. Methodology: The mechanical properties of these materials were evaluated by testing compressive strength and flexural, impact, and thermal properties using the techniques of differential scanning calorimetry and thermogravimetry. Hot plate and steady state temperatura profiles in a non-steady state were simulated with Octave 3.6.4. Results: Thee results obtained for the three mixtures showed little variation in the properties of compression, impact, glass transition, and termal diffusivity with respect to the reference material. The regularity of the decline in mass loss as a function of temperature evidences homogeneity in the samples. e flexural strength decreased the maximum failure load compared to the virgin material, and the thermal conductivity exceeded 0.06W/mK, reducing their insulating capacity. Conclusion: Theese materials can be industrially manufactured in order to produce packaging, caissons, and spheres, among other things.


Expanded polystyrene, EPS recycling, EPS properties.Poliestireno expandido, reciclado de EPS, propiedades EPS

[1] I. Tsivintzelis, A. G. Angelopoulou, and C. Panayiotou, “Foaming of polymers with supercritical CO2: An experimental and theoretical study”, Polymer, vol. 48, pp. 5928-5939, 2007. [Online]. doi: http://doi:10.1016/j.polymer.2007.08.004
[2] C. Arriaga, C. Adrián, J. López, M. Hernández, R. Echavarría, and V. Ovando, “Thermal characterization of microwave assisted foaming of expandable polystyrene”. Ingeniería Investigación y Tecnología, vol. XVII, no. 1, pp. 15-21, Jan.-Mar. 2016. [Online]. doi:
[3] EPS, Industry Alliance Packaging, “Expanded polystyrene packaging environmental profile analysis”, 2009. [Online]. Available: lores.pdf.
[4] A. Emblem and H. Emblem, Eds., “Plastics properties for packaging materials,” in Packaging Technology Fundamentals, Materials and Processes. Philadelphia: Woodhead Publishing Limited, 2012.
[5] E. Susan, M. Selke, and J. Culter, “Foams, cushioning, and distribution packaging,” in Plastics Packaging Properties, Processing, Applications, and Regulations, 3rd ed. Cincinnati: Hanser Publications, 2016, pp. 340-341.
[6] G. Pernett, “Eco-materiales: la incidencia negativa de la construcción en el medio ambiente,” Revista de Investigación Universidad América, vol. 4, no. 1, pp. 61-77, 2011.
[7] Compromiso Empresarial para el Reciclaje (CEMPRE), “Estudio Nacional de Reciclaje”, 2011, Abril. [Online]. Available:ón_al_mercado_de_reciclables_y_las_experiencias_significativas_0.pdf
[8] K. Hamad, M. Kaseem, and F. Deri, “Recycling of waste from polymer materials: An overview of the recent Works.” Polymer Degradation and Stability, vol. 98, no. 2, pp. 2801-2812, 2013. [Online]. doi:
[9] T. Maharana T, Y. Negi, and B. Mohanty, “Recycling of polystyrene,” Polymer-Plastics Technology and Engineering, vol. 46, no. 7, pp. 729-736, March 2007.
[10] L. Gu and T. Ozbakkaloglu, “Use of recycled plastics in concrete: A critical review,” Waste Management, vol. 51, pp. 19–42, 2016. [Online]. doi:
[11] N. Chaukura, W. Gwenzi, T. Bunhu, Deborah T. Ruziwa, and I. Pumure, “Potential uses and value-added products derived from waste polystyrene in developing countries:A review,” Resources, Conservation and Recycling, no. 107, 157–165, 2016. [Online]. doi:
[12] D. Dissanayake, C. Jayasinghe, and M. J Jayasinghe, “A comparative embodied energy analysis of a house with recycled expanded polystyrene (EPS) based foam concrete wall panels,” Energy and Buildings, vol. 135, pp. 85-94, Nov. 2016. [Online]. doi:
[13] A. Kaya and F. Kar, “Properties of concrete containing waste expanded polystyrene and natural resin,” Construction and Building Materials, vol. 105, pp. 572-578, Feb. 2016. [Online]. doi:
[14] S. Acierno, C. Carotenuto C., and M. Pecce, “Compressive and thermal properties of recycled EPS foams,” Polymer-Plastics Technology and Engineering, vol. 49, no. 1, pp. 13-19, Dec. 2010. [Online]. doi:
[15] M. Poletto, H. Ornaghi, and A. Zattera, “Characterization of composites based on expanded polystyrene wastes and wood flour,” Waste Management, vol. 31, no. 4, pp. 779-784, Apr. 2011. [Online]. doi:
[16] J. Mano, “Propiedades térmicas de los polímeros en la enseñanza de la ciencia de materiales e ingeniería. Estudios DSC sobre Poli (Tereftalato de Etileno),” Journal of Materials Education, vol. 25, nos. 4-6, pp. 161-164, 2003. [Online]. Available:
[17] A. Salazar, “On thermal diffusivity,” Eur. J. Phys, no. 24, pp. 351-358, 2003. [Online]. Available:
[18] J. Perilla, L. Chaparro, C. Escorcia, and N. López, “Mezcla de materiales poliméricos I. Evaluación de las mezclas de poliestireno virgen y reciclado,” Revista Ingeniería e Investigación, vol. 44, pp. 80-83, 1999. [Online]. Available:
[19] A. López, “Influencia del proceso de reciclado sobre las propiedades de los materiales compuestos obtenidos por inyección de poliestireno reforzado con fibras lignocelulósicas”, D.S. Thesis, Universidad de Girona, Girona, España, 2004. [Online]. Available:
[20] W. Callister, Introducción a la ciencia e ingeniería de los materiales 2. Madrid: Reverté, 2007.
How to Cite
Barrera-Castro, G. P., Ocampo-Carmona, L. M., & Olaya-Florez, J. J. (2017). Production and characterization of the mechanical and thermal properties of expanded polystyrene with recycled material. Ingenieria Y Universidad, 21(2), 177–194.
Bioengineering and chemical engineering

Most read articles by the same author(s)