Published Aug 9, 2018


Google Scholar
Search GoogleScholar

Fredy Alejandro Orjuela-Guerrero, MSc

John Jairo Olaya-Florez, PhD

José Edgar Alfonso-Orjuela, PhD



Objective: In this work, niobium carbide (NbC) coatings were deposited on substrates of the tool steels AISI H13 and AISI D2 using thermo-reactive deposition/diffusion (TRD) in order to analyze their behavior against corrosion in a saline environment. Materials and methods: The niobium carbides were obtained using salt baths composed of borax pentahydrate, aluminum and ferroniobium. This mixture was heated at 1050 °C for 4 hours. The chemical composition was determined by X-ray fluorescence (XRF). The coatings were morphologically characterized using scanning electron microscopy (SEM), the crystal structure was analyzed using X-ray diffraction (XRD), and the electrochemical behavior was studied using potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS). Results and discussion: The XRF analysis indicated that the coatings contained 87.476 wt% Nb and 51.943 wt% Nb for the D2-substrate and the H13-substrate, respectively. The SEM images revealed that the morphology of the surface of the coatings was homogeneous. The XRD analysis established that the coatings were polycrystalline, and the electrochemical tests established that the corrosion resistance increased slightly in the covered substrates with respect to the uncoated steels, with the best results being obtained in the layers of niobium carbide deposited on AISI D2 steel. Conclusions: The analysis of corrosion resistance revealed that the coatings prepared on D2 steel have a higher corrosion resistance because they have fewer surface imperfections, which causes the coating to exhibit a dielectric behavior.


Coating, Carbides, Niobium, CorrosionRecubrimientos, Carburos, Niobio, Corrosión

[1] T. Arai, and S. Harper, Thermoreactive Deposition/Diffusion Process for Surface Hardening of Steels. [Online] Available:
[2] T. Arai, and N. Komatsu, “Carbide Coating Process by Use of Salt Bath and its Application to Metal Forming Dies,” in Proc. 18th Int. Machine Tool Design and Research Conf., 14-16 Sep 1977, pp. 225-231.
[3] T. Arai, “Carbide Coating Process by Use of Molten Borax Bath in Japan,” J. Heat Treat, vol. 18, no. 2, pp. 15-22, Dec 1979. [Online] Available:
[4] T. Arai, H. Fujita, Y. Sugimoto, et al, “Vanadium Carbonitride Coating by Immersing into Low Temperature Salt Bath,” in Heat Treatment and Surface Engineering, George Krauss, Ed., ASM International, 1988, pp. 49-53.
[5] T. Arai, H. Fujita, Y. Sugimoto and Y. Ohta, “Diffusion carbide coatings formed in molten borax systems,” J Mater Eng, vol. 9, no. 2, pp. 183-189, Jun 1987. [Online]. Available:
[6] H. C. Child, S. A. Plumb, and J. J. McDermott, “Proc. Int. Conf. on Heat Treatment”, n. 310, London, UK, The Metals Society, May 1984, pp 5.1.
[7] F.E. Castillejo, D. Marulanda, and J. J. Olaya, (2013, Jul.) “Estudio de recubrimientos de carburos ternarios de niobio-vanadio producidos sobre acero D2 usando la técnica de deposición por difusión Termorreactiva,” RLMM, vol. 34, no. 2, pp. 1-10, Jun 2014. [Online]. Available:
[8] A. Orjuela, R. Rincón, and J. J. Olaya, “Corrosion resistance of niobium carbide coatings produced on AISI 1045 steel via thermo-reactive diffusion deposition,” Surf Coat Technol, vol. 259, part C, pp. 667-675, Nov 2014. [Online]. Available:
[9] C. K.N. Oliveira, C. L. Benassi, and L.C. Casteletti, “Evaluation of hard coatings obtained on AISI D2 steel by thermo-reactive deposition treatment”. Surf Coat Technol 201 pp. 1880–1885. ISSN: 0257-8972.
[10] M. G. Gee, A. Gant, I. Hutchings, R.Bethke, K. Schiffman, K. Van Acker, S. Poulat, Y. Gachon and J. Von Stebut, “Progress towards standardization of ball cratering,” Wear, vol. 255, no. 1-6, pp. 1-13, Aug-Sep 2003. [Online]. Available:
[11] S. Sen. and U. Sen, “Sliding wear behavior of niobium carbide coated AISI 1040 steel,” Wear, vol. 264, no. 3-4, pp. 219-225, Feb 2008. [Online]. Available:
[12] C. K.N. Oliveira, R. M. Muñoz Riofano and L.C. Casteletti, “Micro-abrasive wear test of niobium carbide layers produced on AISI H13 and M2 steels,” Surf Coat Technol, vol 200, no. 16-17, pp. 5140-5144, Apr 2006. [Online]. Available:
[13] X.S. Fan, Z. G. Yang, C. Zhang and Y. D. Zhang, “Thermo-reactive deposition processed vanadium carbide coating: growth kinetics model and diffusion mechanism,” Surf Coat Technol, vol. 208, pp. 80–86, Sep 2012. [Online]. Available:
[14] X.S. Fan, Z. G. Yang, C. Zhang, et al. “Evaluation of vanadium carbide coatings on AISI H13 obtained by thermo-reactive deposition/diffusion technique,” Surf Coat Technol vol. 205, no. 2, pp. 641–646, Oct 2010. [Online]. Available:
[15] S. T. Oyama, “The chemistry of transition metal carbides and nitrides”, in Blackie Academic & Professional, 1996.›... › Chemistry › General.
[16] F. Castillejo, “Recubrimientos de VC y NbC producidos por TRD: tecnología económica, eficiente y ambientalmente limpia,” Ciencia Ing Neogranadina, vol 22, no. 1, pp. 95-105, Jun 2012. [Online]. Available:
[17] H. Suarez, “Evaluación del comportamiento en condiciones de operación de aceros de baja y media aleación con recubrimiento superficial por el proceso deposición difusión termorreactiva (TRD),” M.S. thesis, Unal, Bogotá, 2003. [Online]. Available:
[18] J. Mendoza, R. Durán and J. Genescá, “Espectroscopia de impedancia electroquímica en corrosión, en Técnicas electroquímicas para el estudio de la corrosión”. [Online]. Available:
[19] C. Aguzzoli, C. A. Figueroa and F. S. de Souza, A. Spinelli and I.J.R. Baumvol, “Corrosion and nanomechanical properties of vanadium carbide thin film coatings of tool steel”. Surf Coat Technol, vol. 206, no. 10, pp. 2725-2731, Jan 2012. [Online]. Available:
[20] A. Guzman, “Evaluación de la resistencia a la corrosión de sistemas de recubrimientos con altos sólidos por medio de espectroscopía de impedancia electroquímica,’’ M.S. Thesis, Fac Minas, Unal, Medellín, 2011. [Online]. Available:
[21] C. Liu, Q. Bi, A. Leyland and A. Matthews, “An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0.5 N NaCl aqueous solution: Part I. Establishment of equivalent circuits for EIS data modeling,” Corrosion Sci., vol. 45, no. 6, pp. 1243-1256, Jun 2003. [Online]. Available:
[22] S.D. Cramer and B.S. Covino, ASM Handbook, vol.13A Corrosion: Fundamentals, Testing, and Protection, ASM Intern, 2003 [Online]. Available:.
[23] C. Liu, Q. Bi, A. Leyland and A. Matthews, “An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0.5 N NaCl aqueous solution: Part II.: EIS interpretation of corrosion behavior,” Corrosion Sci, vol. 45, no. 6, pp. 1257-1273, Jun 2003. [Online]. Available:
[24] L. Velazco, “Producción, caracterización microestructural y estudio de la resistencia a la corrosión de recubrimientos nanoestructurados de NbxSiyNz depositados con el sistema de UBM,” M.S. Thesis, Dpt Ing Mec Mecatronica , Unal, Bogotá, 2011. [Online]. Available:
[25] M. Torres, “Estudio comparativo del proceso de corrosión en recubrimientos cerámicos, metálicos y orgánicos mediante técnicas electroquímicas,” M.S. Thesis, Dpt. Ing Mec Mecatronica, Unal, Bogotá, 2010.
[26] D. Turcio-Ortega, S. E. Rodil and S. Muhl, "Corrosion behavior of amorphous carbon deposit in 0.89% NaCl by electrochemical impedance spectroscopy" Diamond and Related Materials, vol. 18, no. 11, pp. 1360-1368, Nov 2009. [Online]. Available:
How to Cite
Orjuela-Guerrero, F. A., Olaya-Florez, J. J., & Alfonso-Orjuela, J. E. (2018). Niobium carbide coatings produced on tool steels via thermo-reactive diffusion. Ingenieria Y Universidad, 22(2).
Bioengineering and chemical engineering

Most read articles by the same author(s)