Publicado dic 5, 2018



PLUMX
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar


Mario Fernando Gutiérrez Romero http://orcid.org/0000-0003-3452-8658

##plugins.themes.bootstrap3.article.details##

Resumen

En el presente artículo se tiene como objetivos identificar los modelos mentales que representan una problemática sociocientífica específica para estudiantes colombianos en secundaria y analizar los esquemas argumentales que implementan para justificarlos. Utilizando un diseño mixto, cincuenta y dos participantes (52 personas, 31 mujeres y 21 hombres con edades entre los 15 y los 23 años de edad; en niveles escolares de secundaria y pregrado) analizaron la posibilidad de implementar un proyecto de explotación minera en una región bajo control administrativo de una comunidad indígena colombiana. Los análisis cualitativos dan cuenta de la presencia de 11 modelos para pensar la problemática sociocientífica propuesta y un rango limitado de esquemas argumentales (11); los análisis cuantitativos a través de ANOVAs dan cuenta de diferencias significativas para la media de argumentos por grado y modelo mental. Se discuten los resultados resaltando lo conveniente que resulta explorar el discurso argumental de estudiantes desde una perspectiva cognitiva y desarrollista con importantes implicaciones para el ámbito educativo. 

Keywords

Socioscientific issues, socioscientific argumentation, model-based reasoning, argumentation schemes, student beliefsproblemáticas sociocientíficas, argumentación socio-científica, razonamiento basado en modelos, esquemas argumentativos, creencias de estudiantes

References
Adúriz-Bravo, A. (2011). Fostering model-based school scientific argumentation among prospective science teachers. US-China Education Review, 8(5), 718-723. https://doi.org/10.1590/1516-73132014000400014

Åkerblom, D., & Lindahl, M. (2017). Authenticity and the relevance of discourse and figured worlds in secondary students' discussions of socioscientific issues. Teaching and Teacher Education, 65, 205-214. https://doi.org/10.1016/j.tate.2017.03.025

Amossy, R. (2006). L’argumentation dans le discours. Paris: Armand Colin.

Amossy, R. (2014). L'éthos et ses doubles contemporains. Perspectives disciplinaires. Langage et Société, 3, 13-30. https://doi.org/10.3917/ls.149.0013

Amossy, R. (2018). Introduction: la dimension argumentative du discours - enjeux théoriques et pratiques. Argumentation et Analyse du Discours [En ligne], 20, 1-13. https://doi.org/10.4000/aad.2560

Bago, B., & De Neys, W. (2017). Fast logic? Examining the time course assumption of dual process theory. Cognition, 158, 90-109. https://doi.org/10.1016/j.cognition.2016.10.014

Böttcher, F., & Meisert, A. (2011). Argumentation in science education: a model-based framework. Science & Education, 20(2), 103-140. https://doi.org/10.1007/s11191-010-9304-5

Buck, Z. E., Lee, H. S., & Flores, J. (2014). I am sure there may be a planet there: student articulation of uncertainty in argumentation tasks. International Journal of Science Education, 36(14), 2391-2420. https://doi.org/10.1080/09500693.2014.924641

Crawford B., & Jordan R. C. (2013) Inquiry, models, and complex reasoning to transform learning in environmental education. In: M. Krasny & J. Dillon (Eds.), Trading zones in environmental education: Creating transdisciplinary dialogue (pp. 105-123). New York : Peter Lang.

Develaki, M. (2016). Key-Aspects of Scientific Modeling Exemplified by School Science Models: Some Units for Teaching Contextualized Scientific Methodology. Interchange, 47(3), 297-327. https://doi.org/10.1007/s10780-016-9277-7

Develaki, M. (2017). Using computer simulations for promoting model-based reasoning. Science & Education, 26(7-9), 1001-1027. https://doi.org/10.1007/s11191-017-9944-9

Doury, M. & Plantin, C. (2015). Une approche langagière et interactionnelle de l’argumentation. Argumentation et Analyse du Discours, 15, 1-25. https://doi.org/10.4000/aad.2006

Doury, M., Quet, M., & Tseronis, A. (2015). Le façonnage de la critique par les dispositifs. Le cas du débat sur les nanotechnologies. Semen. Revue de Sémio-linguistique des Textes et Discours, 39, 1-11. Retrieved from http://journals.openedition.org/semen/10472

Fowler, S., Zeidler, D. & Sadler, T. (2009). Moral sensitivity in the context of socioscientific issues in high school science students. International Journal of Science Education, 31(2), 279-296. https://doi.org/10.1080/09500690701787909

Gilbert, S. W. (2011). Models based science teaching: Understanding and using mental models. Arlington, VA: NSTA Press.

Gutierrez, M. F. (2017). Escritura colaborativa de textos en quinto grado: Razonamiento y argumentación causal sobre un fenómeno físico. Actualidades Investigativas en Educación, 17(1), 1-25. https://doi.org/10.15517/aie.v17i1.27291

Hay, D. B., & Pitchford, S. (2016). Curating blood: How students’ and researchers’ drawings bring potential phenomena to light. International Journal of Science Education, 38(17), 2596-2620. https://doi.org/10.1080/09500693.2016.1253901

Herman B. C., Sadler T. D., Zeidler D. L., Newton M. H. (2018). A socioscientific issues approach to environmental education. In: G. Reis & J. Scott (Eds.), International Perspectives on the Theory and Practice of Environmental Education: A Reader (Vol. 3., pp. 145-151). Springer, Cham. https://doi.org/10.1007/978-3-319-67732-3

Hsu, Y. S., & Lin, S. S. (2017). Prompting students to make socioscientific decisions: embedding metacognitive guidance in an e-learning environment. International Journal of Science Education, 39(7), 964-979. https://doi.org/10.1080/09500693.2017.1312036

Jho, H., Yoon, H. G., & Kim, M. (2014). The relationship of science knowledge, attitude and decision making on socio-scientific issues: The case study of students’ debates on a nuclear power plant in Korea. Science & Education, 23(5), 1131-1151. https://doi.org/10.1007/s11191-013-9652-z

Kathpalia, S. S., & See, E. K. (2016). Improving argumentation through student blogs. System, 58, 25-36. https://doi.org/10.1016/j.system.2016.03.002

Kerbatch-Orecchioni, C. (1992): Les Interactions Verbales, 2. Paris: Armand Colin

Klosterman, M. L., & Sadler, T. D. (2010). Multi‐level assessment of scientific content knowledge gains associated with socioscientific issues‐based instruction. International Journal of Science Education, 32(8), 1017-1043. https://doi.org/10.1080/09500690902894512

Koh, N. K. (2016). Approaches to teaching financial literacy: Evidence-based practices in Singapore schools. In International Handbook of Financial Literacy (pp. 499-513), Singapore: Springer.

Kragten, M., Admiraal, W., & Rijlaarsdam, G. (2015). Students’ learning activities while studying biological process diagrams. International Journal of Science Education, 37(12), 1915-1937. https://doi.org/10.1080/09500693.2015.1057775

Kuhn, D. (1991). The skills of argument. New York, NY: Cambridge University Press. http://dx.doi.org/10.1017/CBO9780511571350

Kuhn, D. (2005). Education for thinking. New York, NY: Harvard University Press.

Kuhn, D. (2015). Thinking together and alone. Educational Researcher, 44(1), 46-53. https://doi.org/10.3102/0013189X15569530

Kuhn, D., & Modrek, A. (2018). Do reasoning limitations undermine discourse? Thinking & Reasoning, 24(1), 97-116. https://doi.org/10.1080/13546783.2017.1388846

Kuhn, D., Hemberger, L., & Khait, V. (2017). Argue with me: Argument as a path to developing students' thinking and writing. New York, NY: Routledge.

Kuhn, D., Iordanou, K., Pease, M., & Wirkala, C. (2008). Beyond control of variables: What needs to develop to achieve skilled scientific thinking? Cognitive Development 23, 435–451. https://doi.org/10.1016/j.cogdev.2008.09.006

Kuhn, D., Ramsey, S., & Arvidsson, T. S. (2015). Developing multivariable thinkers. Cognitive Development, 35, 92-110. https://doi.org/10.1016/j.cogdev.2014.11.003

Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33(1), 159-174. Retrieved from http://www.jstor.org/stable/2529310

Lederman, N. G., Antink, A., & Bartos, S. (2014). Nature of science, scientific inquiry, and socio-scientific issues arising from genetics: A pathway to developing a scientifically literate citizenry. Science & Education, 23(2), 285-302. https://doi.org/10.1007/s11191-012-9503-3

Lee, C. B., Koh, N. K., Cai, X. L., & Quek, C. L. (2012). Children's use of meta-cognition in solving everyday problems: Children's monetary decision making. Australian Journal of Education, 56(1), 22-39. Retrieved from https://research.acer.edu.au/aje/vol56/iss1/3

Lee, Y. C., & Grace, M. (2012). Students' reasoning and decision making about a socioscientific issue: A cross‐context comparison. Science Education, 96(5), 787-807. https://doi.org/10.1002/sce.21021

Macagno, F., & Walton, D. (2015). Classifying the patterns of natural arguments. Philosophy & Rhetoric, 48, 26–53. Retrieved from https://scholar.uwindsor.ca/crrarpub/26

Meyer, H. (2018). Teachers’ Thoughts on student decision making during engineering design lessons. Education Sciences, 8(1), 1-11. https://doi.org/10.3390/educsci8010009

Moon, A., Stanford, C., Cole, R., & Towns, M. (2017). Analysis of inquiry materials to explain complexity of chemical reasoning in physical chemistry students’ argumentation. Journal of Research in Science Teaching, 54(10), 1322-1346. https://doi.org/10.1002/tea.21407

Myhill, D., & Jones, S. (2015). Conceptualizing metalinguistic understanding in writing/Conceptualización de la competencia metalingüística en la escritura. Cultura & Educación, 27(4), 839-867. https://doi.org/10.1080/11356405.2015.1089387

Owens, D. C., Sadler, T. D., & Zeidler, D. L. (2017). Controversial issues in the science classroom. Phi Delta Kappan, 99(4), 45-49. https://doi.org/10.1177/0031721717745544

Pennington, D., Bammer, G., Danielson, A., Gosselin, D., Gouvea, J., Habron, G., ... & Wei, C. (2016). The EMBeRS project: employing model-based reasoning in socio-environmental synthesis. Journal of Environmental Studies and Sciences, 6(2), 278-286. https://doi.org/10.1007/s13412-015-0335-8

Perelman, C. & Olbrechts-Tyteca, L. (1958). Traité de l’argumentation. La nouvelle rhétorique. Bruxelles: Éditions de l’Université de Bruxelles.

Pitiporntapin, S., Yutakom, N., Sadler, T. D., & Hines, L. (2018). Enhancing pre-service science teachers’ understanding and practices of socioscientific issues (ssis)-based teaching via an online mentoring program. Asian Social Science, 14(5), 1-13. Retrieved from http://www.ccsenet.org/journal/index.php/ass/article/viewFile/73670/41240

Plantin, C. (2011). Les bonnes raisons des émotions: principes et méthode pour l’étude du discours « émotionné ». Berne, Suisse: Peter Lang.

Plantin, C. (2014). Dictionnaire de l’argumentation - Une introduction notionnelle aux études d’argumentation. Lyon, France: ENS Editions.

Plantin, C. (2015). Emotion and affect. In K. Tracy, C. Ilie & T. Sandel (Eds.), The International Encyclopedia of Language and Social Interaction (pp. 514-523). Boston: John Wiley & Sons.

Quillin, K., & Thomas, S. (2015). Drawing-to-learn: a framework for using drawings to promote model-based reasoning in biology. CBE-Life Sciences Education, 14(2), 1-16. https://doi.org/10.1187/cbe.14-08-0128

Sadler, T. & Donnelly, L. (2006). Socioscientific argumentation: The effects of content knowledge and morality. International Journal of Science Education, 28(12), 1463–1488. https://doi.org/10.1080/09500690600708717

Sadler, T. D., Romine, W. L. & Topçu, M. S. (2016). Learning science content through socio-scientific issues-based instruction: a multi-level assessment study. International Journal of Science Education, 38(10), 1622-1635. https://doi.org/10.1080/09500693.2016.1204481

Sanders, T. J., & Spooren, W. P. (2015). Causality and subjectivity in discourse: The meaning and use of causal connectives in spontaneous conversation, chat interactions and written text. Linguistics, 53(1), 53-92. https://doi.org/10.1515/ling-2014-0034

Smyrnaiou, Z., Petropoulou, E., & Sotiriou, M. (2015). Applying argumentation approach in STEM education: A case study of the European student parliaments project in Greece. American Journal of Educational Research, 3(12), 1618-1628. https://doi.org/10.12691/education-3-12-20

Sorensen, A. E., Jordan, R. C., Shwom, R., Ebert-May, D., Isenhour, C., McCright, A. M., … Robinson, J. M. (2016). Model-based reasoning to foster environmental and socio-scientific literacy in higher education. Journal of Environmental Studies and Sciences, 6(2), 287-294. https://doi.org/10.1007/s13412-015-0352-7

Stephens, R. G., Dunn, J. C., & Hayes, B. K. (2018). Are there two processes in reasoning? The dimensionality of inductive and deductive inferences. Psychological Review, 125(2), 218-244. https://doi.org/10.1037/rev0000088

Toulmin, S.E. (1993). The uses of argument. Cambridge University Press.

Traverso, V. (2009). The dilemmas of third-party complaints in conversation between friends. Journal of Pragmatics, 41(12), 2385-2399. https://doi.org/10.1016/j.pragma.2008.09.047

Trouche, E., Sander, E., & Mercier, H. (2014). Arguments, more than confidence, explain the good performance of reasoning groups. Journal of Experimental Psychology: General, 143(5), 1958-1971. https://doi.org/10.1037/a0037099

Tsai, C. Y. (2015). Improving students' PISA scientific competencies through online argumentation. International Journal of Science Education, 37(2), 321-339. https://doi.org/10.1080/09500693.2014.987712

Uluçinar, U., & Aypay, A. (2016). A model of decision-making based on critical thinking. Education and Science, 41(185), 251-268. https://doi.org/10.15390/EB.2016.4639

Van Eemeren, F. H., Garssen, B., Krabbe, E. C., Henkemans, A. F. S., Verheij, B., & Wagemans, J. H. (2014). Handbook of Argumentation Theory. Dordrecht, Netherlands: Springer.

Van Eemeren, F. H., Houtlosser, P., & Snoeck, H. (2007). Argumentative indicators in discourse: A pragma-dialectical study. Dordrecht, The Netherlands: Springer.

Walton, D., & Macagno, F. (2016). A classification system for argumentation schemes. Argument & Computation, 6(3), 219-245. https://doi.org/10.1080/19462166.2015.1123772

Walton, D., Reed, C., & Macagno, F. (2008). Argumentation schemes. Cambridge: Cambridge University Press.

Williams, G., & Clement, J. (2015). Identifying multiple levels of discussion-based teaching strategies for constructing scientific models. International Journal of Science Education, 37(1), 82-107. https://doi.org//10.1080/09500693.2014.966257

Zangori, L., Vo, T., Forbes, C. T., & Schwarz, C. V. (2017). Supporting 3rd-grade students’ model-based explanations about groundwater: a quasi-experimental study of a curricular intervention. International Journal of Science Education, 39(11), 1421-1442. https://doi.org/10.1080/09500693.2017.1336683
Cómo citar
Gutiérrez Romero, M. F. (2018). La argumentación sociocientífica y el razonamiento basado en modelos: Un estudio sobre la explotación minera en Colombia. Universitas Psychologica, 17(5), 1–12. https://doi.org/10.11144/Javeriana.upsy17-5.samb
Sección
Artículos

Artículos más leídos del mismo autor/a