Socioscientific Argumentation and Model-Based Reasoning: A Study on Mining Exploitation in Colombia
HTML Full Text
PDF
XML

Keywords

Socioscientific issues
socioscientific argumentation
model-based reasoning
argumentation schemes
student beliefs

How to Cite

Socioscientific Argumentation and Model-Based Reasoning: A Study on Mining Exploitation in Colombia. (2018). Universitas Psychologica, 17(5), 1-12. https://doi.org/10.11144/Javeriana.upsy17-5.samb
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar

Abstract

The primary objective of this article is to identify the mental models that represent a social-scientific problematic specific to high-school Colombian students. This is followed by the analysis of the argumentative schemes that these students may use to justify such models. By using a combined design, fifty two participants (52 people, 31 women and 21 men between the ages of 15 and 23; with education levels between high school and undergraduate degree) analyzed the possibility of implementing a mining exploitation project in a specific region of Colombia that is currently under the administrative control of one of Colombia’s native communities. The qualitative analysis showed the presence of 11 models for thinking about the given social-scientific problematic and a limited range of argumentation schemes (11); the quantitative analysis through ANOVAs (variance analysis) showed significant differences regarding the number of arguments per grade and the mental model. The results are discussed emphasizing the advantage that proceeds from exploring the students’ argumentative speech from a developmental-cognitive perspective with significant implications in the educational field.

HTML Full Text
PDF
XML

Adúriz-Bravo, A. (2011). Fostering model-based school scientific argumentation among prospective science teachers. US-China Education Review, 8(5), 718–723.

Åkerblom, D., & Lindahl, M. (2017). Authenticity and the relevance of discourse and figured worlds in secondary students' discussions of socioscientific issues. Teaching and Teacher Education, 65, 205-214. http://dx.doi.org/10.1016/j.tate.2017.03.025

Amossy, R. (2006). L’argumentation dans le discours. Paris : Armand Colin.

Amossy, R. (2014). L'éthos et ses doubles contemporains. Perspectives disciplinaires. Langage et Société, 3, 13-30. DOI: 10.3917/ls.149.0013

Amossy, R. (2018). Introduction : la dimension argumentative du discours - enjeux théoriques et pratiques. Argumentation et Analyse du Discours [En ligne], 20, 1-13. Retrieved from http://journals.openedition.org/aad/2560. DOI:10.4000/aad.2560

Bago, B., & De Neys, W. (2017). Fast logic?: Examining the time course assumption of dual process theory. Cognition, 158, 90-109. http://dx.doi.org/10.1016/j.cognition.2016.10.014

Böttcher, F., & Meisert, A. (2011). Argumentation in science education: a model-based framework. Science & Education, 20(2), 103–140. https://doi.org/10.1007/s11191-010-9304-5

Buck, Z. E., Lee, H. S., & Flores, J. (2014). I am sure there may be a planet there: student articulation of uncertainty in argumentation tasks. International Journal of Science Education, 36(14), 2391-2420. http://dx.doi.org/10.1080/09500693.2014.924641

Coolican, H. (2005). Métodos de investigación y estadística en psicología. Bogotá, Colombia: Editorial El Manual Moderno.

Crawford B., & Jordan R.C. (2013) Inquiry, models, and complex reasoning to transform learning in environmental education. In: Krasny and Dillon (eds.) Transdisciplinary Research in Environmental Education. Ithaca: Cornell University Press.

Develaki, M. (2016). Key-Aspects of Scientific Modeling Exemplified by School Science Models: Some Units for Teaching Contextualized Scientific Methodology. Interchange, 47(3), 297-327. DOI 10.1007/s10780-016-9277-7

Develaki, M. (2017). Using Computer Simulations for Promoting Model-based Reasoning. Science & Education, 26(7-9), 1001-1027. https://doi.org/10.1007/s11191-017-9944-9

Doury, M. & Plantin, C. (2015). Une approche langagière et interactionnelle de l’argumentation. Argumentation et Analyse du Discours, 15, 1-25. DOI : 10.4000/aad.2006

Doury, M., Quet, M., & Tseronis, A. (2015). Le façonnage de la critique par les dispositifs. Le cas du débat sur les nanotechnologies. Semen. Revue de Sémio-linguistique des Textes et Discours, 39, 1-11. Retrieved from http://journals.openedition.org/semen/10472

Fowler, S., Zeidler, D. & Sadler, T. (2009). Moral sensitivity in the context of socioscientific issues in high school science students. International Journal of Science Education, 31(2), 279–296. https://doi.org/10.1080/09500690701787909

Gilbert, S.W. (2011). Models based science teaching: Understanding and using mental models. Arlington, VA: NSTA Press.

Gutierrez, M. F. (2017). Escritura colaborativa de textos en quinto grado: Razonamiento y argumentación causal sobre un fenómeno físico. Actualidades Investigativas en Educación 17(1), 1-25. DOI10.15517/aie.v17i1.27291

Hay, D. B., & Pitchford, S. (2016). Curating blood: how students’ and researchers’ drawings bring potential phenomena to light. International Journal of Science Education, 38(17), 2596-2620. https://doi.org/10.1080/09500693.2016.1253901

Herman B.C., Sadler T.D., Zeidler D.L., Newton M.H. (2018) A Socioscientific issues approach to environmental education. In: Reis G., Scott J. (Eds) International Perspectives on the Theory and Practice of Environmental Education: A Reader. Environmental Discourses in Science Education, vol 3. Springer, Cham

Hsu, Y. S., & Lin, S. S. (2017). Prompting students to make socioscientific decisions: embedding metacognitive guidance in an e-learning environment. International Journal of Science Education, 39(7), 964-979. http://dx.doi.org/10.1080/09500693.2017.1312036

Jho, H., Yoon, H. G., & Kim, M. (2014). The relationship of science knowledge, attitude and decision making on socio-scientific issues: The case study of students’ debates on a nuclear power plant in Korea. Science & Education, 23(5), 1131-1151. DOI 10.1007/s11191-013-9652-z

Kathpalia, S. S., & See, E. K. (2016). Improving argumentation through student blogs. System, 58, 25-36. https://doi.org/10.1016/j.system.2016.03.002

Kerbatch-Orecchioni, C. (1992): Les Interactions Verbales, 2. Paris : Armand Colin

Klosterman, M. L., & Sadler, T. D. (2010). Multi‐level assessment of scientific content knowledge gains associated with socioscientific issues‐based instruction. International Journal of Science Education, 32(8), 1017-1043. https://doi.org/10.1080/09500690902894512

Koh, N. K. (2016). Approaches to Teaching Financial Literacy: Evidence-Based Practices in Singapore Schools. In International Handbook of Financial Literacy (pp. 499-513), Singapore: Springer.

Kragten, M., Admiraal, W., & Rijlaarsdam, G. (2015). Students’ learning activities while studying biological process diagrams. International Journal of Science Education, 37(12), 1915-1937. https://doi.org/10.1080/09500693.2015.1057775

Kuhn, D. (1991). The skills of argument. Cambridge University Press.

Kuhn, D. (2005). Education for thinking. Harvard University Press.

Kuhn, D. (2015). Thinking together and alone. Educational Researcher, 44(1), 46-53. DOI: 10.3102/0013189X15569530

Kuhn, D., & Modrek, A. (2018). Do reasoning limitations undermine discourse?. Thinking & Reasoning, 24(1), 97-116. https://doi.org/10.1080/13546783.2017.1388846

Kuhn, D., Hemberger, L., & Khait, V. (2017). Argue with me: Argument as a path to developing students' thinking and writing. Routledge.

Kuhn, D., Iordanou, K., Pease, M., & Wirkala, C. (2008). Beyond control of variables: What needs to develop to achieve skilled scientific thinking?. Cognitive Development 23, 435–451. doi:10.1016/j.cogdev.2008.09.006

Kuhn, D., Ramsey, S., & Arvidsson, T. S. (2015). Developing multivariable thinkers. Cognitive Development, 35, 92-110. http://dx.doi.org/10.1016/j.cogdev.2014.11.003

Lederman, N. G., Antink, A., & Bartos, S. (2014). Nature of science, scientific inquiry, and socio-scientific issues arising from genetics: A pathway to developing a scientifically literate citizenry. Science & Education, 23(2), 285-302. DOI 10.1007/s11191-012-9503-3

Lee, C. B., Koh, N. K., Cai, X. L., & Quek, C. L. (2012). Children's use of meta-cognition in solving everyday problems: Children's monetary decision making. Australian Journal of Education, 56(1), 22-39. Retrieved from https://research.acer.edu.au/aje/vol56/iss1/3

Lee, Y. C., & Grace, M. (2012). Students' reasoning and decision making about a socioscientific issue: A cross‐context comparison. Science Education, 96(5), 787-807. doi:10.1002/sce.21021

Macagno, F., & Walton, D. (2015). Classifying the patterns of natural arguments. Philosophy & Rhetoric, 48, 26–53. Retrieved from https://scholar.uwindsor.ca/crrarpub/26

Meyer, H. (2018). Teachers’ Thoughts on student decision making during engineering design lessons. Education Sciences, 8(1), 1-11. https://doi.org/10.3390/educsci8010009

Moon, A., Stanford, C., Cole, R., & Towns, M. (2017). Analysis of inquiry materials to explain complexity of chemical reasoning in physical chemistry students’ argumentation. Journal of Research in Science Teaching, 54(10), 1322-1346. https://doi.org/10.1002/tea.21407

Myhill, D., & Jones, S. (2015). Conceptualizing metalinguistic understanding in writing/Conceptualización de la competencia metalingüística en la escritura. Cultura & Educación, 27(4), 839-867. https://doi.org/10.1080/11356405.2015.1089387

Owens, D. C., Sadler, T. D., & Zeidler, D. L. (2017). Controversial issues in the science classroom. Phi Delta Kappan, 99(4), 45-49. https://doi.org/10.1177/0031721717745544

Pennington, D., Bammer, G., Danielson, A., Gosselin, D., Gouvea, J., Habron, G., ... & Wei, C. (2016). The EMBeRS project: employing model-based reasoning in socio-environmental synthesis. Journal of Environmental Studies and Sciences, 6(2), 278-286. doi: 10.1007/s13412-015-0335-8

Perelman, C. & Olbrechts-Tyteca, L. (1958). Traité de l’argumentation. La nouvelle rhétorique. Bruxelles: Éditions de l’Université de Bruxelles.

Pitiporntapin, S., Yutakom, N., Sadler, T. D., & Hines, L. (2018). Enhancing pre-service science teachers’ understanding and practices of socioscientific issues (ssis)-based teaching via an online mentoring program. Asian Social Science, 14(5), 1-13. Retrieved from http://www.ccsenet.org/journal/index.php/ass/article/viewFile/73670/41240

Plantin, C. (2011). Les bonnes raisons des émotions : principes et méthode pour l’étude du discours « émotionné ». Berne, Suisse : Peter Lang.

Plantin, C. (2014). Dictionnaire de l’argumentation - Une introduction notionnelle aux études d’argumentation. Lyon, France : ENS Editions.

Plantin, C. (2015). Emotion and affect. En K. Tracy, C. Ilie & T. Sandel, (Eds.), The International Encyclopedia of Language and Social Interaction, (pp. 514-523). Boston: John Wiley & Sons.

Quillin, K., & Thomas, S. (2015). Drawing-to-learn: a framework for using drawings to promote model-based reasoning in biology. CBE-Life Sciences Education, 14(2), 1-16. DOI:10.1187/cbe.14-08-0128

Sadler, T. & Donnelly, L. (2006). Socioscientific argumentation: The effects of content knowledge and morality. International Journal of Science Education, 28(12), 1463–1488. https://doi.org/10.1080/09500690600708717

Sadler, T. D., Romine, W. L. & Topçu, M. S. (2016). Learning science content through socio-scientific issues-based instruction: a multi-level assessment study. International Journal of Science Education, 38(10), 1622-1635. https://doi.org/10.1080/09500693.2016.1204481

Sanders, T. J., & Spooren, W. P. (2015). Causality and subjectivity in discourse: The meaning and use of causal connectives in spontaneous conversation, chat interactions and written text. Linguistics, 53(1), 53-92. DOI: https://doi.org/10.1515/ling-2014-0034

Smyrnaiou, Z., Petropoulou, E., & Sotiriou, M. (2015). Applying Argumentation Approach in STEM Education: A Case Study of the European Student Parliaments Project in Greece. American Journal of Educational Research, 3(12), 1618-1628. DOI:10.12691/education-3-12-20

Sorensen, A. E., Jordan, R. C., Shwom, R., Ebert-May, D., Isenhour, C., McCright, A. M., … Robinson, J. M. (2016). Model-based reasoning to foster environmental and socio-scientific literacy in higher education. Journal of Environmental Studies and Sciences, 6(2), 287-294. DOI 10.1007/s13412-015-0352-7

Stephens, R. G., Dunn, J. C., & Hayes, B. K. (2018). Are there two processes in reasoning? The dimensionality of inductive and deductive inferences. Psychological Review, 125(2), 218-244. http://dx.doi.org/10.1037/rev0000088

Toulmin, S.E. (1993). The uses of argument. Cambridge University Press.

Traverso, V. (2009). The dilemmas of third-party complaints in conversation between friends. Journal of Pragmatics, 41(12), 2385-2399. doi:10.1016/j.pragma.2008.09.047

Trouche, E., Sander, E., & Mercier, H. (2014). Arguments, more than confidence, explain the good performance of reasoning groups. Journal of Experimental Psychology: General, 143(5), 1958. http://dx.doi.org/10.1037/a0037099

Tsai, C. Y. (2015). Improving students' PISA scientific competencies through online argumentation. International Journal of Science Education, 37(2), 321-339. https://doi.org/10.1080/09500693.2014.987712

Uluçinar, U., & Aypay, A. (2016). A model of decision-making based on critical thinking. Education and Science, 41(185), 251-268. DOI: 10.15390/EB.2016.4639

Van Eemeren, F. H., Garssen, B., Krabbe, E. C., Henkemans, A. F. S., Verheij, B., & Wagemans, J. H. (2014). Handbook of Argumentation Theory. Dordrecht, Netherlands: Springer.

Van Eemeren, F., Houtlosser, P., & Snoeck, H. (2007). Argumentative indicators in discourse: A pragma-dialectical study. Dordrecht, The Netherlands: Springer.

Walton, D., & Macagno, F. (2016). A classification system for argumentation schemes. Argument & Computation, 6(3), 219-245. DOI: 10.1080/19462166.2015.1123772

Walton, D., Reed, C., & Macagno, F. (2008). Argumentation schemes. Cambridge: Cambridge University Press.

Williams, G., & Clement, J. (2015). Identifying multiple levels of discussion-based teaching strategies for constructing scientific models. International Journal of Science Education, 37(1), 82-107. http://dx.doi.org/10.1080/09500693.2014.966257

Zangori, L., Vo, T., Forbes, C. T., & Schwarz, C. V. (2017). Supporting 3rd-grade students model-based explanations about groundwater: a quasi-experimental study of a curricular intervention. International Journal of Science Education, 39(11), 1421-1442. DOI: 10.1080/09500693.2017.1336683

This journal is registered under a Creative Commons Attribution 4.0 International Public License. Thus, this work may be reproduced, distributed, and publicly shared in digital format, as long as the names of the authors and Pontificia Universidad Javeriana are acknowledged. Others are allowed to quote, adapt, transform, auto-archive, republish, and create based on this material, for any purpose (even commercial ones), provided the authorship is duly acknowledged, a link to the original work is provided, and it is specified if changes have been made. Pontificia Universidad Javeriana does not hold the rights of published works and the authors are solely responsible for the contents of their works; they keep the moral, intellectual, privacy, and publicity rights. Approving the intervention of the work (review, copy-editing, translation, layout) and the following outreach, are granted through an use license and not through an assignment of rights. This means the journal and Pontificia Universidad Javeriana cannot be held responsible for any ethical malpractice by the authors. As a consequence of the protection granted by the use license, the journal is not required to publish recantations or modify information already published, unless the errata stems from the editorial management process. Publishing contents in this journal does not generate royalties for contributors.