Published Mar 15, 2011



PLUMX
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar
Downloads


César Augusto Quinayás-Burgos, MSc

Mariela Muñoz-Añasco, BSc

Óscar Andrés Vivas-Albán, PhD

Carlos Alberto Gaviria-López, PhD

##plugins.themes.bootstrap3.article.details##

Abstract

This article shows the steps followed in the design and construction of the prosthetic right hand UC-1. This device was designed based on a tree structure: three fingers with a range of three degrees for each finger. The operation and control of the prosthesis was tested in simulation, and then a prototype of a multi-articulated finger was designed and built. It was small and compact, and could be easily integrated into a palm structure in order to make a polymorphic hand. After the validated finger was completed, three finger prostheses were built. Analog Hall and force sensors were added to provide sensitivity to the hand, as well as a DSP control system which was managed through Labview®. The goal is to obtain a first prototype that can offer a functional solution to hand amputees, offering a number of grasping movements, as well as cylindrical, spherical, lateral and hook grasping.

Keywords

Prosthetic hand, robotic hand, anthropomorphic fingerPrótesis de mano, mano robótica, robótica de rehabilitación, dedo antropomorfo

References
BENNETT, D. J. y HOLLERBACH, J. M. Closed-loop kinematic calibration of the Utah-MIT hand. En Lecture notes in control and information sciences. Vol. 139. Berlin: Springer, 1990, pp. 539-552.
CARROZZA, M. et al. Design of a cybernetic hand for perception and action. Biological Cybernetics. 2006, vol. 95, núm. 6, pp. 629-644.
DARIO, P. et al. CYBERHAND-a consortium project for enhanced control of powered artificial hands based on direct neural interfaces. 33rd Neural Prosthesis Workshop, Bethesda, USA, 2002.
DEPARTAMENTO NACIONAL DE ESTADÍSTICA (DANE). [Web en línea]. . [Consulta: 14-07-2009].
FUKAYA, N. et al. Design of the TUAT/Karlsruhe humanoid hand. IEEE/RSJ International Conference on Intelligent Robots and Systems. Takamatsu, Japan: IROS, 2000, pp. 1754-1759.
GUZMÁN, A. y TORRES, V. Pinzas y agarres privilegiables según perfil ocupacional en el diseño de una mano robótica. Popayán: Editorial Universidad del Cauca, 2008.
KHALIL, W. y DOMBRE, E. Modeling, identification and control of robots. London: Hermes Penton Science, 2002.
LIU, H.; FAN, S. W. y CHEN, Z. P. Multisensory five-finger dexterous hand: The DLR/HIT hand II. IEEE International Conference on Intelligent Robots and System. Nice, France: IROS, 2008, pp. 3692-3697.
MARTIN, T. B. et al. Tactile gloves for autonomous grasping with the NASA/DARPA Robonaut. IEEE International Conference on Robotics & Automation. New Orleans: ICRA 2004, pp. 1713-1718.
MASON, M. T. y SALISBURY, J. K. Robot hands and the mechanics of manipulation. IEEE Transactions on Automatic Control. 1985, vol. 31, núm. 9, pp. 879-880.
OTTO BOCK. [Web en línea]. . [Consulta: 23-02-2010]. POLOLU ROBOTICS AND ELECTRONICS. [Web en línea]. [Consulta: 14-07-2009].
QUINAYÁS, C. Diseño y construcción de una prótesis robótica de mano funcional adaptada a varios agarres [Tesis de Maestría]. Popayán: Universidad del Cauca, 2010.
SCHULZ, S. et al. A hydraulically driven multifunctional prosthetic hand. Robotica. 2005, vol. 23, núm. 3, pp. 293-299.
TOUCH BIONICS. [Web en línea]. . [Consulta: 14-07-2009].
VIVAS, A. y AGUILAR, E. Modelado geométrico y dinámico de una prótesis de mano, III IEEE Colombian Workshop on Robotics and Automation, Cartagena, Colombia, 2007.
YANG, J. et al. A multi-fingered hand prothesis. Mechanism and Machine Theory, 2004, vol. 39, núm. 6, pp. 555-581.
How to Cite
Quinayás-Burgos, C. A., Muñoz-Añasco, M., Vivas-Albán, Óscar A., & Gaviria-López, C. A. (2011). Design and construction of the robotic hand prosthesis UC-1. Ingenieria Y Universidad, 14(2), 223. https://doi.org/10.11144/Javeriana.iyu14-2.dcpr
Section
Articles

Most read articles by the same author(s)