Published Mar 16, 2011


Google Scholar
Search GoogleScholar

Janneth Torres-Agredo, PhD

Ruby Mejía de Gutiérrez, PhD

Silvio Delvasto-Arjona, PhD



The present paper is part of a research project whose main objective was to obtain metakaolin (MK) from raw materials obtained in Colombia. MK is to be used as a pozzolan in Portland cement manufacturing. In previous studies, the performance shown by concrete blended with MK, in terms of mechanical strengths and durability, proved to be adequate. As a result, the effect of the percentage of added MK on the properties of concrete was studied. For purposes of comparison, MK was substituted with silica fume (SF). Compressive strength and durability tests, such as total absorption, capillary absorption, and chloride permeability, were used. For compressive strength, concrete showed better performance when mixed up with a 20% MK. Higher MK percentages generated a decrease in resistance. Additionally, when compared to concrete mixed with SF, compressive strength was slightly lower for MK-mixed concrete. Nevertheless, MK proved to be better in terms of durability with respect to the pattern sample and the one added with SF.


Strength of materials, concrete-testing, pozzuolanas-testing, metakaolintestingResistencia de materiales, hormigónprueba, puzolanas-pruebas, metacaolín-pruebas

BADOGIANNIS, E. y TSIVILIS, S. Exploitation of poor Greek kaolins: Durability of metakaolin concrete. Cement and Concrete Composites. 2009, núm. 31, pp. 128-133.
BALOGH, A. High Reactivity Metakaolin. Concrete Construction. 1995, vol. 40, núm. 7, pp. 1-3.
BARATA, M. y DAL MOLIN, D. The production of high performance concrete with additions of silica fume and metakaolin in the Amazon region. s. d., 1999.
BARATA, M. y DAL MOLIN, D. Avaliacao preliminar do residuo caulinítico das industrias de beneficiamento de caulim como materia-prima na producao de uma metacaulinita altamente reactiva. Antac. 2002, vol. 2, núm. 1, pp. 69-78.
CALDARONE, M. A. y GRUBER, K. A. High Reactivity Metakaolin (HRM) for high performance concrete. Proceedings 5th Conference on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete. 1995, núm. 2, pp. 815-827.
CALDARONE, A.; GRUBER, A. y BURG, G. High-reactivity metakaolin: a new generation mineral mixture. Concrete International. 1994, pp. 37-41.
CURCIO, F.; DEANGELIS B. A. y PAGLIOLICO, S. Metakaolin as a pozzolanic microfiller for high performance mortars. Cement and Concrete Research. 1998, vol. 28, núm. 6, pp. 803-809.
DE GUTIÉRREZ, R.; DELVASTO, S. y TALERO, R. Una nueva puzolana para materiales cementicios de elevadas prestaciones. Materiales de Construcción. 2000, vol. 50, núm. 260, pp. 5-12.
DING, J. y LI, Z. Effects of metakaolin and silica fume on properties of concrete. ACI Materials Journal. 2002, vol. 99, núm. 4, pp. 393-398.
FAGERLUND, G. On the Capillarity of Concrete. Oslo: Nordic Concrete Research, 1982.
HEWLETT, P. Chemistry of cement and concrete. 4th Ed. New York: Butterworth Heinemann, 1998.
HONG-SAM, K. A.; SANG-HO, L. B. y HAN-YOUNG, M. Strength properties and durability aspects of high strength concrete using Korean metakaolin. Construction and Building Materials. 2007, núm. 21, pp. 1229-1237.
KHATIB, J. M. y WILD, S. Pore size distribution of metakaolin paste. Cement and Concrete Research. 1996, vol. 26, núm. 10, pp. 1545-1553.
LI, Z. y DING, Z. Property improvement of Portland cement by incorporating with metakaolin and slag. Cement and Concrete Research. 2003, núm. 33, pp. 579-584.
MASSAZZA, F. Pozzolanic cements. Cement and Concrete composites. 1993, núm. 15, pp. 185-214.
MEHTA, P. K. Pozzolanic and Cementituous by-product. Proceedings 3rd International Conference on Fly Ash, Silica Fume, Slag and Natural Puzzolans in Concrete, Trondheim, 1989.
MEJÍA DE GUTIÉRREZ, R. et al. Concreto adicionado con metacaolín: comportamiento a carbonatación y cloruros. Revista de la Facultad de Ingeniería Universidad de Antioquia. 2009, núm. 48, pp. 55-64.
MEJÍA DE GUTIÉRREZ, R. et al. Influencia de la adición de metacaolín a morteros y hormigones. Boletín Geológico y Minero. 2006, vol. 117, núm. 4, pp. 715-722.
MEJÍA DE GUTIÉRREZ, R.; TORRES, J. y GUERRERO, C. E. Análisis del proceso térmico de producción de una puzolana. Materiales de Construcción. 2004, núm. 54, pp. 65-72.
MOYA, J. S. Últimos avances sobre el tratamiento térmico del caolín: formación o no de puzolanas artificiales. Puzolanas naturales, cenizas volantes y similares en la construcción. Cemento y Hormigón. 1998, pp. 71-75.
RAZAK, H.; CHAI, H. K. y WONG, H. S. Near surface characteristics of concrete containing supplementary cementing materials. Cement and Concrete Composites. 2004, núm. 26, pp. 883-889.
SABIR, B. B. et al. Metakaolin and calcined clays as pozzolans for concrete: a review. Cement and Concrete Composites. 2001, núm. 23, pp. 441-454.
TORRES, J.; MEJÍA DE GUTIÉRREZ, R. y PUERTAS, F. Efecto de la temperatura de tratamiento de un caolín en la permeabilidad a cloruros en morteros. Materiales de Construcción. 2007, vol. 57, núm. 285, pp. 61-69.
WILD, S.; KHATIB, J. M. y JONES, A. Relative strength, pozzolanic activity and cement hydration in superplasticised metakaolin concrete. Cement and Concrete Research. 1996, vol. 26, núm. 10, pp. 1537-1544.
ZHANG, M. H. y MALHOTRA, V. M. Characteristics of thermally activated alumino-silicate pozzolanic material and its use in concrete. Cement and Concrete Research. 1995, vol. 25, núm. 8, pp. 1713-1725.
How to Cite
Torres-Agredo, J., Mejía de Gutiérrez, R., & Delvasto-Arjona, S. (2011). Effects of metakaolin percentages in the final properties of blended concrete. Ingenieria Y Universidad, 15(1), 77–90.

Most read articles by the same author(s)