##plugins.themes.bootstrap3.article.main##


Eduard Andrés Caicedo-Caicedo, MSc

Ruby Mejía de Gutiérrez, PhD

Marisol Gordillo-Suárez, PhD

Janneth Torres-Agredo, PhD

Abstract

This paper analyzes the feasibility of using a residue of spent catalyst (FCC) of the cracking process, from a Colombian oil company, in the production of building elements such as locks and pavers. To define the optimal mix of portland cement/FCC, Portland cement mortars with FCC ratios between 0 and 70% as replacement of cement were prepared and its compressive strength is evaluated at ages up to 28 days of curing. Using a statistical processing, applying the methodology of response, the proportions of each component in the mixture are optimized. In addition the study of the prcess of hydration is performed by techniques of X-ray diffraction (XRD) and differential thermal analysis (TG / DTG). The results indiocate that it is possible to incorporate into the concrete FCC as replacement of cement up to 45% and obtain a building element with mechanical properties comparable to those commercially available elements. According to the Colombian standard, the elements developed in this research classified as non-structural blocks and floor pavers. It raises this is an alternative use of the residue and contribute to environmental sustainability.

##plugins.themes.bootstrap3.article.details##

Keywords

spent cracking catalyst, blended cements, building elements

References
[1] E. M. Gartner y D. Macphee, “A physico-chemical basis for novel cementitious binders”, Cement Concrete Research, vol. 41, no. 7, pp. 736-749, 2011.
[2] H. G. Van Oss. (2014). U.S. Geological survey, mineral commodity summaries [En línea]. Disponible en: http://minerals.usgs.gov/minerals/pubs/commodity/cement/mcs-2014-cemen.pdf
[3] R. Siddique y J. Klaus, “Influence of metakaolin on the problems of mortar and concrete: A review”, Applied Clay Science, vol. 43, no. 3-4, pp. 392-400, 2008.
[4] J. Torres y R. Mejía de Gutiérrez, “Influencia de la composición mineralógica de los caolines sobre el desempeño de morteros adicionados”, Dyna, vol. 74, no. 153, pp. 61-67, 2007.
[5] J. Torres y R. Mejía de Gutiérrez, “Desempeño de morteros adicionados con metacaolín frente a la acción de sulfatos”, Ingeniería Investigación, vol. 28, no. 1, pp. 117-122, 2008.
[6] J. Torres et al., “Procesos de hidratación de pastas OPC adicionadas con caolín tratado térmicamente”, Rev. Fac. Ing. Univ. Antioquia, no. 43, pp. 77-85, 2008.
[7] A. Elahi et al., “Mechanical and durability properties of high performance concretes containing supplementary cementitious materials”, Construction Building Materials, vol. 24, no. 3, pp. 292-299, 2010.
[8] M. A. Megat et al., “Influence of supplementary cementitious materials on engineering properties of high strength concrete”, Construction Building Materials, vol. 25, no. 5, pp. 2639-2648, 2011.
[9] M. Zain et al., “Production of rice husk ash for use in concrete as a supplementary cementitious material”, Construction Building Materials, vol. 25, no. 2, pp. 798-805, 2011.
[10] M. Thomas, “The effect of supplementary cementing materials on alkali-silica reaction: A review”, Cement Concrete Research, vol. 41, no. 12, pp. 1224-1231, 2011.
[11] B. Lothenbach, K. Scrivener y R. Hooton, “Supplementary cementitious materials”, Cement Concrete Research, vol. 41, no. 12, pp. 1244-1256, 2011.
[12] M. Sahmaran, G. Yildirim y T. Erdem, “Self-healing capability of cementitious composites incorporating different supplementary cementitious materials”, Cement Concrete Composites, vol. 35, no. 1, pp. 89-101, 2013.
[13] A. Mardani-Aghabaglou, G. Sezer y K. Ramyar, “Comparison of fly ash, silica fume and metakaolin from mechanical properties and durability performance of mortar mixtures view point”, Construction Building Materials, vol. 70, pp. 17-25, 2014.
[14] M. Cyr et al., “Effect of cement type on metakaolin efficiency”, Cement Concrete Research, vol. 64, pp. 63-72, 2014.
[15] O. Oueslati y J. Duchesn, “Resistance of blended cement pastes subjected to organic acids: Quantification of anhydrous and hydrated phases”, Cement Concrete Composites, vol. 45, pp. 89-101, 2014.
[16] S. Antiohos, V. Papadakis y S. Tsimas, “Rice husk ash (RHA) effectiveness in cement and concrete as a function of reactive silica and fineness”, Cement Concrete Research, vol. 61-62, pp. 20-27, 2014.
[17]. N. Saca y M. Georgescu, “Behavior of ternary blended cements containing limestone filler and fly ash in magnesium sulfate solution at low temperature”, Construction Building Materials, vol. 71, pp. 246-253, 2014.
[18] R. Taha, et al., “Recycling of waste spent catalyst in road construction and mansory blocks”, Journal Hazardous Materials, vol. 229-230, pp. 122-127, 2012.
[19] E. Zornosa, J. Paya y P. Garcés, “Chloride-induced corrosion of steel embedded in mortars containing fly ash and spent cracking catalyst”, Corrosion Science, vol. 50, no. 6, pp. 1567- 1575, 2008.
[20] J. Amaya, A. Tristancho y C. Sánchez, “Utilizacion de ceniza volante y catalizador de FCC gastado en la recuperación de cromo III de los efluentes liquidos de las curtiembres”, Ingeniería Investigación, vol. 25, no. 1, pp. 39-48, 2005.
[21] E. Furimsky, “Review Spent refinery catalysts: environment, safety and utilization”, Catalysis Today, vol. 30, no. 4, pp. 223-286, 1996.
[22] N. Su et al., “Reuse of waste catalysts from petrochemical industries for cement substitution”, Cement Concrete Research, vol. 30, no. 11, pp. 1773-1783, 2000.
[23] A. Escardino et al., “Utilizing the used catalyst from refinery FCC units as a substitute of kaolin in formulating ceramic frits”, Waste management Research, vol. 13, no. 5, pp. 569-578, 1995.
[24] E. Sánchez, Aprovechamiento del catalizador usado de FCC de refinerias. Castellón, España: Universitat Jaume I De Castelló, 1994.
[25] J. Trochez, J. Torres y R. Mejáa de Gutierrez, “Estudio de la hidratación de pastas de cemento adicionadas con catalizador de craqueo catalítico usado (FCC) de una refinería colombiana”, Rev. Fac. Ing. Univ. Antioquia, vol. 55, pp. 26-34, 2010.
[26] J. Payá, J. Monzó y M. Borrachero, “Physical, chemical and mechanical properties of fluid catalytic cracking catalyst residue (FC3R) blended cements”, Cement Concrete Research, vol. 31, no. 1, pp. 57-61, 2001.
[27] J. Payá et al., “Determination of the pozzolanic activity of fluid catalytic cracking residue. Thermogravimetric analysis studies on FC3R-lime pastes”, Cement Concrete Research, vol. 33, no. 7, pp. 1085-1091, 2003.
[28] J. Payá et al., “Hormigones blancos: nuevos composites con adición de residuo de catalizador de craqueo catalítico”, en Congreso MATCOMP’07, Valladolid, España, 2007.
[29] M. García de Lomas, M. Sánchez de Rojas y M. Frías, “Pozzolanic reaction of a spent fluid catalytic cracking catalyst in FCC-cement mortars”, Journal Thermal Analysis Calorimetry, vol. 90, no. 2, pp. 443-447, 2007.
[30] E. Zornoza et al., “Compatibility of fluid catalytic cracking catalyst residue (FC3R) with various types of cement”, Advances Cement Research, vol. 19, no. 3, pp. 117-124, 2007.
[31] E. Zornoza et al., “Improvement of the chloride ingress resistance of opc mortars by using spent cracking catalyst”, Cement Concrete Research, vol. 39, no. 2, pp. 126-139, 2009.
[32] B. Pacewska, I. Wilinska y J. Kubissa, “Use of spent catalyst from catalytic cracking in fluidized bed as a new concrete additive”, Thermochimica Acta, vol. 322, no. 2, pp. 175-181, 1998.
[33] B. Pacewska, I. Wilinska y M. Bukowska, “Hydration of cement slurry in the presence of spent cracking catalyst”, Journal Thermal Analysis Calorimetry, vol. 60, no. 1, pp. 71-78, 2000.
[34] B. Pacewska, I. Wilinska y M. Bukowska, “Influence of some aggressive media on corrosión resistance of mortars with spent cracking catalyst”, Journal Thermal Analysis Calorimetry, vol. 60, no. 1, pp. 257-264, 2000.
[35] B. Pacewska et al., “Modification of the properties of concrete by new pozzolan A waste catalyst from the catalytic process in a fluidized bed”, Cement Concrete Research, vol. 32, no. 1, pp. 145-152, 2002.
[36] K. Al-Jabri et al., “Potential use of FCC spent Catalyst as partial replacement of cement or sand in cement mortars”, Construction Building Materials, vol. 39, pp. 77-81, 2013.
[37] R. Neves et al., “Durability performance of concrete incorporating spent fluid cracking catalyst”, Cement Concrete Composites, vol. 55, pp. 308-314, 2015.
[38] M. Morsy et al., “Behaviour of blended cement mortars containing nano-metakaolin at elevated temperatures”, Construction Building Material, vol. 35, pp. 900-905, 2012.
[39] H. Wu et al., “The effect of waste oil-cracking catalyst on the compressive strength of cement pastes and mortars”, Cement Concrete Research, vol. 33, no. 2, pp. 245-253, 2003.
[40] Y. Tseng, C. Huang y K. Hsu, “The pozzolanic activity of a calcined waste FCC catalyst and its effect on the compressive strength of cementitious materials”, Cement Concrete Research, vol. 35, no. 4, pp. 782-787, 2005.
[41] J. Torres, A. Baquero y A. Silva, “Evaluación de la actividad puzolanica de un residuo de la industria del petroleo”, Dyna, vol. 76, no 158, pp. 49-53, 2009.
[42] J. Torres, J. Trochez y R. Mejía de Gutiérrez, “Reutilización de un residuo de la industria petroquímica como adición al cemento portland”, Ingeniería Ciencia, vol. 8, no. 15, pp. 141-156, 2012.
[43] Colombia, Icontec, Norma Técnica Colombiana (NTC) 111. Especificaciones para la mesa de flujo usada en ensayos de cemento hidráulico. Bogotá: Icontec, 2013.
[44] Colombia, Icontec, Norma Técnica Colombiana (NTC) 4024. Prefabricados de concreto. Muestreo y ensayo de prefabricados de concreto no reforzados, vibrocompactados. Bogotá: Icontec, 2001.
[45] S. Antiohos, E. Chouliara y S. Timas, “Re-use of spent catalyst from oil-cracking refineries as supplementary cementing material”, China Particuology, vol.4. no. 2, pp. 73-76, 2006.
[46] B. Pacewska, et al., “Early hydration of calcium aluminate cement blended with spent FCC catalyst at two temperatures”, Procedia Engineering, vol. 57, pp. 844-850, 2013.
[47] Colombia, Icontec, Norma Técnica Colombiana (NTC) 2017. Adoquines de concreto para pavimentos. Bogotá: Icontec, 2004.
[48] Colombia, Icontec, Norma Técnica Colombiana (NTC) 4076. Unidades (bloques y ladrillos) de concreto, para mampostería no estructural interior y chapa de concreto. Bogotá: Icontec, 1997.
How to Cite
Caicedo-Caicedo, E., Mejía de Gutiérrez, R., Gordillo-Suárez, M., & Torres-Agredo, J. (2015). Reusing a residue of the oil industry (FCC) in the production of building elements. Ingenieria Y Universidad, 19(1), 135-154. https://doi.org/10.11144/Javeriana.iyu19-1.rrip
Section
Articles
Most read articles by the same author(s)