Monte Carlo optimization using beta distribution
PDF (Spanish)

Keywords

Monte Carlo method
heuristics
combinatorial optimization

How to Cite

Monte Carlo optimization using beta distribution. (2011). Ingenieria Y Universidad, 15(1), 61-76. https://doi.org/10.11144/Javeriana.iyu15-1.omcu
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar

Abstract

This paper presents an innovating Monte Carlo method for exploring n-dimensional non-linear functions defined in a compact domain which is transformed to the hypercube [0;1]n. This approach uses the beta distribution for generating random samples. Te distribution parameters, named Alpha and beta, are dynamically adjusted so that, in the first iterations, the beta distribution looks like the uniform distribution. ; in the last iterations, the beta distribution is centered in the known minimum and the variance is near zero, so that only the neighborhood around the optimum is sampled. The method proposed is tested through four well known benchmark functions.

PDF (Spanish)

BÄCK, T. Evolutionary algorithms in theory and practice. London: Oxford, 1996.
BAZARAA, M.; SHERALI, H. y SHETTY, C.M. Nonlinear optimization. New Jersey: Wiley, 2006.
BEYER, H. y SCHWEFEL, H. Evolution strategies. Natural Computing. 2002, vol. 1, núm. 1, pp. 3-52.
DIXON, L. C. W. y SZEGÖ, G. P. (eds.). Towards global optimization, parts 1 and 2. Amsterdam: North-Holland, 1978.
DUGAN, N. y ERKOÇ, Ş. Genetic algorithm–Monte Carlo hybrid geometry optimization method for atomic clusters. Computational Materials Science. 2009, vol. 45, núm. 1, pp. 127-132.
HIMMENLBLAU, D. Applied nonlinear optimization. New York: McGraw Hill, 1972.
KADRI, O.; GHARBI, F. y TRABELSI, A. Monte Carlo optimization of some parameters in gamma irradiation processing. Nuclear Instruments and Methods in Physics Research. 2006, vol. 245, núm. 2, pp. 459-463.
KIRKPATRICK, S.; GELATT, C.D. y VECCHI, M.P. Optimization by simulated annealing. Science. 1983, vol. 220, núm. 4598, pp. 671-680.
LEI, G. Adaptive random search in Quasi-Monte Carlo methods for global optimization. Computers & Mathematics with Applications. 2002, vol. 43, núms. 6-7, pp. 747-754.
PARDALOS, P. M. y RESENDE, M. G. C. (eds.). Handbook of applied optimization. New York: Oxford University Press, 2002.
PATEL, N. R.; SMITH, R. L. y ZABINSKY, Z. B. Pure adaptive search in Monte Carlo optimization. Mathematical Programming. 1988, vol. 43, pp. 317-328.
PIERRE, D. A. Optimization theory with application. New York: Dover, 1986.
RAO, S. Engineering optimization, theory and practice. London: Wiley, 1996.
REN, Y.; DING, Y. y LIANG, F. Adaptive evolutionary Monte Carlo algorithm for optimization with applications to sensor placement problems. Statistics and Computing. 2008, vol. 18, núm. 4, pp. 375-390.
RIABOV, G. A.; RIABOV, V. G. y TVERSKOY, M. G. Application of Monte-Carlo method for design and optimization of beam lines. Nuclear Instruments and Methods in Physics Research. 2006, vol. 558, núm. 1, pp. 44-46.
RINNOOY KAN, A. H. G. y TIMMER, G. T. Stochastic methods for global optimization. American Journal of Mathematical and Management Sciences. 1984, vol. 4, pp. 7-39.
TÖRN, A. y ZILINSKAS, A. Global optimization. Lecture Notes in Computer Science. 1989, vol. 350, pp. 1-255.

This journal is registered under a Creative Commons Attribution 4.0 International Public License. Thus, this work may be reproduced, distributed, and publicly shared in digital format, as long as the names of the authors and Pontificia Universidad Javeriana are acknowledged. Others are allowed to quote, adapt, transform, auto-archive, republish, and create based on this material, for any purpose (even commercial ones), provided the authorship is duly acknowledged, a link to the original work is provided, and it is specified if changes have been made. Pontificia Universidad Javeriana does not hold the rights of published works and the authors are solely responsible for the contents of their works; they keep the moral, intellectual, privacy, and publicity rights.

Approving the intervention of the work (review, copy-editing, translation, layout) and the following outreach, are granted through an use license and not through an assignment of rights. This means the journal and Pontificia Universidad Javeriana cannot be held responsible for any ethical malpractice by the authors. As a consequence of the protection granted by the use license, the journal is not required to publish recantations or modify information already published, unless the errata stems from the editorial management process. Publishing contents in this journal does not generate royalties for contributors.