Resumen
En este artículo se presenta el novedoso método de Monte Carlo para explorar funciones no lineales n-dimensionales definidas en un dominio compacto que es transformado al hipercubo unitario [0; 1]n. En esta aproximación se usa la distribución beta para generar muestras aleatorias; entre tanto, los parámetros de la distribución (alfa y beta) son ajustados dinámicamente, tal que en las primeras iteraciones la distribución beta es similar a la distribución uniforme. En las últimas iteraciones, la distribución beta es centrada en el mínimo conocido y la varianza es cercana a cero, tal que únicamente el vecindario alrededor del óptimo es muestreado. El método propuesto es probado usando cuatro funciones bien conocidas.
BAZARAA, M.; SHERALI, H. y SHETTY, C.M. Nonlinear optimization. New Jersey: Wiley, 2006.
BEYER, H. y SCHWEFEL, H. Evolution strategies. Natural Computing. 2002, vol. 1, núm. 1, pp. 3-52.
DIXON, L. C. W. y SZEGÖ, G. P. (eds.). Towards global optimization, parts 1 and 2. Amsterdam: North-Holland, 1978.
DUGAN, N. y ERKOÇ, Ş. Genetic algorithm–Monte Carlo hybrid geometry optimization method for atomic clusters. Computational Materials Science. 2009, vol. 45, núm. 1, pp. 127-132.
HIMMENLBLAU, D. Applied nonlinear optimization. New York: McGraw Hill, 1972.
KADRI, O.; GHARBI, F. y TRABELSI, A. Monte Carlo optimization of some parameters in gamma irradiation processing. Nuclear Instruments and Methods in Physics Research. 2006, vol. 245, núm. 2, pp. 459-463.
KIRKPATRICK, S.; GELATT, C.D. y VECCHI, M.P. Optimization by simulated annealing. Science. 1983, vol. 220, núm. 4598, pp. 671-680.
LEI, G. Adaptive random search in Quasi-Monte Carlo methods for global optimization. Computers & Mathematics with Applications. 2002, vol. 43, núms. 6-7, pp. 747-754.
PARDALOS, P. M. y RESENDE, M. G. C. (eds.). Handbook of applied optimization. New York: Oxford University Press, 2002.
PATEL, N. R.; SMITH, R. L. y ZABINSKY, Z. B. Pure adaptive search in Monte Carlo optimization. Mathematical Programming. 1988, vol. 43, pp. 317-328.
PIERRE, D. A. Optimization theory with application. New York: Dover, 1986.
RAO, S. Engineering optimization, theory and practice. London: Wiley, 1996.
REN, Y.; DING, Y. y LIANG, F. Adaptive evolutionary Monte Carlo algorithm for optimization with applications to sensor placement problems. Statistics and Computing. 2008, vol. 18, núm. 4, pp. 375-390.
RIABOV, G. A.; RIABOV, V. G. y TVERSKOY, M. G. Application of Monte-Carlo method for design and optimization of beam lines. Nuclear Instruments and Methods in Physics Research. 2006, vol. 558, núm. 1, pp. 44-46.
RINNOOY KAN, A. H. G. y TIMMER, G. T. Stochastic methods for global optimization. American Journal of Mathematical and Management Sciences. 1984, vol. 4, pp. 7-39.
TÖRN, A. y ZILINSKAS, A. Global optimization. Lecture Notes in Computer Science. 1989, vol. 350, pp. 1-255.
Una vez aceptado un trabajo para publicación la revista podrá disponer de él en toda su extensión, tanto directamente como a través de intermediarios, ya sea de forma impresa o electrónica, para su publicación ya sea en medio impreso o en medio electrónico, en formatos electrónicos de almacenamiento, en sitios de la Internet propios o de cualquier otro editor. Este uso tiene como fin divulgar el trabajo en la comunidad científica y académica nacional e internacional y no persigue fines de lucro. Para ello el autor o los autores le otorgan el permiso correspondiente a la revista para dicha divulgación mediante autorización escrita.
Todos los articulos aceptados para publicación son sometidos a corrección de estilo. Por tanto el autor /los autores autorizan desde ya los cambios sufridos por el artículo en la corrección de estilo.
El autor o los autores conservarán los derechos morales y patrimoniales del artículo.