Published Jun 11, 2013



PLUMX
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar
Downloads


Carlos Alberto Martínez, MSc

Juan David Velasquez-Henao, PhD

##plugins.themes.bootstrap3.article.details##

Abstract

In this paper we propose a new methodology for the prediction of nonlinear time series using genetic programming. The proposed approach is based on incorporating the concept of functional blocks and the modification of the genetic algorithm so that it operates with it. The functional blocks represent well known statistical models for the time series forecasting. The proposed algorithm allows the exploration and exploitation of regions where there is greater possibility of finding better forecasting models. Two Benchmark time series were predicted in order to validate the proposed approach, and it was found that our methodology predicts more accurately the time series considered, in comparison with other nonlinear models.

Keywords

Pronóstico, programación genética, redes neuronales artificiales, algoritmos genéticos, modelos no linealesForecasting, genetic programming, artificial neural networks, genetic algorithms, nonlinear models

References
ABDELMALEK, W.; HAMIDA, S.B. y ABID, F. Selecting the best forecasting-implied volatility model using genetic programming. Journal of Applied Mathematics and Decision Sciences. 2009, vol. 2009. art. no. 179230.
BERNAL-URBINA, M. y FLORES-MÉNDEZ, A. Time series forecasting through polynomial artificial neural networks and genetic programming. Proceedings of the International Joint Conference on Neural Networks. 2008, art. no. 4634270, pp. 3325-3330
BOX, G. E. P. y JENKINS, G. M. Time Series Analysis: Forecasting and Control. 3rd Ed. Englewood Clifs, NJ: Prentice Hall, 1970.
CHEN, X.; PANG, Y.; WANG, S.Y., et al. A new integrated forecasting method. Xitong Gongcheng Lilun yu Shijian/System Engineering Theory and Practice. 2008, vol. 28, núm. 4, pp. 108-112+123.
DE MENEZES, L. M. y NIKOLAEV, N. Y. Forecasting with genetically programmed polynomial neural networks. International Journal of Forecasting. 2006, vol. 22, núm. 2, pp. 249-265.
FARAWAY, J. y CHATFIELD, C. Time series forecasting with neural networks: a comparative study using the airline data. Journal of the Royal Statistical Society: Series C (Applied Statistics). 1998, vol. 47, pp. 231-250.
KOZA, J. R. Genetic Programming: On the Programming of Computers by Means of Natural Selection. Cambridge: MIT Press, 1992.
LEE, Y. S. y TONG, L. I. Forecasting time series using a methodology based on autoregressive integrated moving average and genetic programming. Knowledge-Based Systems. 2011, vol. 24, núm. 1, pp. 66-72.
NIKOLAEV, N. Y. y IBA, H. Learning polynomial feedforward neural networks by genetic programming and backpropagation. IEEE Transactions on Neural Networks. 2003, vol. 14, núm. 2, pp. 337-350.
SETTE, S. y BOULLART, L. Genetic Programming: Principles and applications. Engineering Applications of Artificial Intelligence. 2001, vol. 14, núm. 6, pp.727-736.
SULLIVAN, R.; TIMMERMAN, A. G y WHITE, H. L. Jr. Data-Snooping, Technical Trading Rule Performance, and the Bootstrap. Journal of Finance. 1999, vol. 54, núm. 5, pp. 1647-1691.
VELÁSQUEZ, J. D.; OLAYA, Y.; FRANCO, C. J. Predicción de series temporales usando Máquinas de Vectores de Soporte. Ingeniare, Revista Chilena de Ingeniería. 2010, vol. 18, núm. 1, pp. 64-75.
WANG, W. C.; CHAU, K. W.; CHENG, C. T., et al. A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. Journal of Hydrology. 2009, vol. 374, núm. 3-4, pp. 294-306.
WAGNER, N.; MICHALEWICZ, Z.; KHOUJA, M., et al. Time series forecasting for dynamic environments: The DyFor genetic program model. IEEE Transactions on Evolutionary Computation. 2007, vol. 11, núm. 4, pp. 433-452.
WAGNER, N.; KHOUJA, M.; MICHALEWICZ, Z., et al. Forecasting economic time series with the DyFor genetic program model. Applied Financial Economics. 2008, vol. 18, núm. 5, pp. 357-378.
ZHANG, G. Time Series forecasting using a hybrid ARIMA and neural network model. Neurocomputing. 2003, vol. 50, pp. 159-175.
How to Cite
Martínez, C. A., & Velasquez-Henao, J. D. (2013). A modification of the methodology of symbolic regression for time series prediction. Ingenieria Y Universidad, 17(2), 325-338. https://doi.org/10.11144/Javeriana.iyu17-2.nmpp
Section
Articles

Most read articles by the same author(s)