Published Jun 20, 2016



PLUMX
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar
Downloads


Adriana Marcela Vega-Escobar, MSc

Francisco Santamaria -Piedrahita, PhD

Edwin Rivas-Trujillo, PhD

##plugins.themes.bootstrap3.article.details##

Abstract

This paper proposes a home energy management model called GEDE, outlined in the Colombian Law 1715/2014. Different operation ways that can be applied in the proposed residential energy system are presented. The system has a variable topology, so that it is fed by distributed generation sources or by the interconnected system, and they are related to a control system. Three scenarios were analyzed: (1) Distributed generation during peak hours and the user manually activates the system; (2) the user decides to connect several loads that require high power levels in peak hours, and then the service of distributed generation is reserved until this hour to supply the high power, thus this scenario is semiautomatic, and (3) the system saves energy in an autonomous way through intelligent infrastructure controlling the appliances and lighting utilization. This proposal allows providing new energy consumption patterns through mechanisms that make a significant contribution to the efficient energy by utilizing monitoring, control, and supervision techniques together with distributed generation. In the proposal household users participate making decisions related to energy consumption and generation, through the incentives provided by Law 1715.

Keywords

eficiencia energética, generación distribuida, Ley colombiana 1715, cadena de valor energética, infraestructura inteligenteenergy efficiency, distributed generation, Colombian Law 1715, energy value chain, smart infrastructure

References
[1] Ley 1715/2014, de mayo 13, por medio de la cual se regula la integración de las energías renovables no convencionales al Sistema Energético Nacional. Diario Oficial 49.150.
[2] N. S. Wade, P. C. Taylor, P. D. Lang, and P. R. Jones, “Evaluating the benefits of an electrical energy storage system in a future smart grid,” Energ. Policy, vol. 38, no. 11, pp. 7180-7188, 2010.
[3] H. Chen, T. Ngoc Cong, W. Yang, C. Tan, Y. Li, and Y. Ding, “Progress in electrical energy storage system: A critical review,” Prog. Nat. Sci., vol. 19, no. 3, pp. 291-312, 2009.
[4] S. M. Amin and B. F. Wollenberg, “Toward a smard grid: power delivery for the 21st century,” IEEE Power Energy Mag, vol. 3, pp. 34-41, 2005.
[5] J. Crispim, J. Braz, R. Castro, and J. Esteves, “Smart grids in the EU with smart regulation: Experiences from the UK, Italy and Portugal,” Utilities Policy, vol. 21, pp. 85-93, 2014.
[6] D. Villa, C. Martín, F. Villanueva, F. Moya y J. López, “A dynamically reconfigurable architecture for smart grids,” IEEE Consum. Electron. Trans., vol. 57, pp. 411-419, 2011.
[7] H. Jinsoo, C. Chang Sig, and L. Llwoo Lee, “More efficient home energy management system based on ZigBee communication and infrared remote controls,” IEEE Consum. Electron., vol. 57, pp. 85-89, 2011.
[8] A. M. Vega Escobar, F. Santamaría y E. Trujillo, “Modeling for home electric energy management: A review,” Renew. Sust. Energ. Rev., vol. 52, pp. 948-959, 2015.
[9] R. R. Mohassel, A. Fung, F. Mohammadi, and K. Raahemifar, “A survey on Advanced Metering Infrastructure,” Electr. Power Energ. Syst., vol. 63, pp. 473-484, 2014.
[10] B. JinSung, J. Boungiu, N. Junyoung, K. Youngil, and PP. Sehyun, “An intelligent self-adjusting sensor for smart home services based on ZigBee communications,” IEEE Consum. Electron., vol. 58, pp. 794-802, 2012.
[11] B. S. Powers and B. Margossian, “Using a rule-based algorithm to disaggregate end-use load profiles from premise-level data,” IEEE Comput. Appl. Power, vol. 4, no. 2, pp. 42-47, 1991.
[12] Z. C. Younghun, K. T. Schmid, and M. B. Srivastava, “Viridiscope: design and implementation of a fine grained power monitoring system for homes,” in UbiComp, pp. 245-254, 2009.
[13] S. Meiling, T. Steinbach, M. Duge, and T. C. Schmidt, “Consumer-oriented integration of smart homes and smart grids: a case for multicast-enabled home gateways?,” IEEE Third Int. Conf. Consumer Electron., Berlin, 2013.
[14] P. Chavali, P. Yang, and A. Nehorai, “A distributed algorithm of appliance scheduling for home energy management system,” IEEE Trans. Smart Grid, vol. 5, no. 1, pp. 282-290, 2014.
[15] B. Frankston, “(Not) in control of your home [bits versus electrons],” IEEE Consum. Electron. Mag., vol. 2, pp. 56-58, 2013.
[16] A. M. Vega Escobar, F. Santamaría y E. Trujillo Rivas, “Internet de los objetos empleando Arduino para la gestión eléctrica domiciliaria,” Revista de la EAN, vol. 77, pp. 20-40, 2014.
[17] A. H. Kazmi, M. J. O’Grady, and G. M. O’Hare, “Energy management in the smart home,” in 2013 IEEE 10th Int. Conf. Ubiquitous Intell. Comput., Ireland, 2013.
[18] N. K. Suryadevara, S. C. Mukhopadhyay, S. D. Tebje Kelly, and S. P. Singh Gill, “WSN-based smart sensors and actuator for power management in intelligent buildings,” IEEE/ASME Trans., pp. 1-8, 2014.
[19] H. Morsali, S. M. Shekarabi, K. Ardekani, H. Khayami, A. R. Fereidunian, M. Ghassemian, and H. Lesani, “Smart plugs for building energy management systems,” in Smart Grids (ICSG), 2nd Iranian, 2012.
[20] M. L. Marceau and R. Zmeureanu, “Nonintrusive load disaggregation computer program to estimate the energy consumption of major end uses in residential buildings,” Energ. Convers. Manage., vol. 41, pp. 1389-1403, 2000.
[21] D. Shahgoshtasbi and M. M. Jamshidi, “A new intelligent neuro-fuzzy paradigm for energy-efficient homes,” IEEE Syst. J., vol. 8, no. 2, pp. 664-673, 2014.
[22] A. Chehri and H. T. Mouftah, “Service-oriented architecture for Smart building energy management,” de IEEE ICC 2013-Selected Areas in Communications Symposium, Budapest, 2013.
[23] R. Boynuegri, B. Yagcitekin, M. Bays, A. Karakas, and M. Uzunoglu, “Energy management algorithm for smart home with renewable energy sources,” in 4th Int. Conf. Power Eng., Energ. Electr. Drives, Istanbul, 2013.
[24] A. M. Vega Escobar, F. Santamaría y E. Rivas Trujillo, “Propuesta para elaborar un modelo de gestión para redes eléctricas domiciliarias: Aproximación conceptual,” in Sixth Int. Symp. Energ. Technol. Innovat. Forum, Gurabo – Puerto Rico, 2014.
[25] M. Ali, A. Alahäivälä, F. Malik, M. Humayun, A. Safdarian, and M. Lehtonen, “A market-oriented hierarchical framework for residential demand response,” Electr. Power Energ. Syst., vol. 69, pp. 257-263, 2015.
[26] M. R. Marqueda Zamora and L. A. Sánchez Viveros, “Curvas de demanda de energia electrica en el sector domestico de dos regiones de México,” Instituto Investigaciones Eléctricas de México, pp. 173-180, 2011.
[27] M. Á. Cerezo Moreno, “Gestión activa de la demanda de energía eléctrica,” Universidad Carlos III, Madrid, 2010.
[28] C. Goebel, “On the business value of ICT-controlled plug-in electric vehicle charging in California,” Energ. Policy, vol. 53, pp. 1-10, 2013.
How to Cite
Vega-Escobar, A. M., Santamaria -Piedrahita, F., & Rivas-Trujillo, E. (2016). Efficient home energy management based on the Colombian Law 1715/2014. Ingenieria Y Universidad, 20(2), 221-238. https://doi.org/10.11144/Javeriana.iyu20-2.ehem
Section
Industrial and systems engineering

Most read articles by the same author(s)