Published Dec 16, 2022



PLUMX
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar


Giovanni Torres, MSc https://orcid.org/0000-0003-2719-6720

Juan Romano, MSc https://orcid.org/0000-0001-8228-6820

Hermes Vacca, MSc https://orcid.org/0000-0003-3159-6997

Yezid Alvarado, PhD https://orcid.org/0000-0002-1260-8211

Fredy Reyes, PhD https://orcid.org/0000-0002-6407-168X

##plugins.themes.bootstrap3.article.details##

Abstract

The fatigue behavior of ultrahigh-performance fiber-reinforced concrete for use as an overlay in the typical rehabilitation of a flexible pavement structure was analyzed in this study. Compression and four-point bending tests were carried out to characterize the concrete mechanical properties. Fatigue tests were performed using the four-point method, and test beams were evaluated without precracking. The specimens were subjected to constant-amplitude sinusoidal loading with a loading frequency of 10 Hz. The magnitude of each stress level was calculated as a percentage of the initial crack stress. The following results were obtained for the concrete: a compressive strength of 127.1 MPa, bending yield strength of 6.23 MPa, maximum bending stress of 9.89 MPa, Young's modulus of 38.1 GPa, and dynamic modulus of 28.6 GPa. The stress and strain at one million cycles were 6.0 MPa and 166 μm/m, respectively. The fatigue test results indicated superior properties of the ultrahigh-performance concrete to those of similar materials.

Keywords

UHPC, UHPFRC, fatigue, flexural, concrete, strain, stress, fiber, precrackingUHPC, UHPFRC, fatiga, flexión, concreto, deformación, esfuerzo, fibra, pre-fisura

References
[1] Y. H. Huang, “Pavement analysis and Design,” TRID, 30-Nov-1992. [Online]. Available: https://trid.trb.org/view.aspx?id=374362. [Accessed: 12-Aug-2022]
[2] R. O. Rasmussen, G. K. Chang, and J. M. Ruiz, “New Software Promises to Put Whitetopping on the Map.”, Public Roads, vol. 66, n.o 1, pp. 38-43, 2002. https://highways.dot.gov/public-roads/julyaugust-2002/new-software-promises-put-whitetopping-map
[3] J. M. Vandenbossche and M. Barman, “Bonded whitetopping overlay design considerations for prevention of reflection cracking, joint sealing, and the use of dowel bars”, Transp. Res. Rec., n.o 2155, pp. 3-11, 2010, doi: https://doi.org/10.3141/2155-01.
[4] H. E. de Solminihac Tampier, Gestión de infraestructura vial, 3a ed. Alfaomega Grupo Editor, 2005.
[5] J. M. Vandenbossche and A. J. Fagerness, “Performance, analysis, and repair of ultrathin and thin whitetopping at Minnesota Road Research facility”, Transp. Res. Rec., n.o 1809, pp. 191-198, 2002, doi: https://doi.org/10.3141/1809-21.
[6] A. Neville and P.-C. Aïtcin, “High performance concrete—An overview”, Mater. Struct., vol. 31, n.o 2, pp. 111-117, mar. 1998, doi: A. Neville and P.-C. Aïtcin, “High performance concrete-An overview”, Mater. Struct., vol. 31, n.o 2, pp. 111-117, mar. 1998, doi: https://doi.org/10.1007/BF02486473.
[7] S. Rajan, J. Olek, T. L. Robertson, K. Galal, T. Nantung, and W. J. Weiss, “Analysis of Performance of Ultra-Thin Whitetopping Subjected to Slow Moving Loads in an Accelerated Pavement Testing Facility”, 2001.
[8] J. T. Balbo, “Performance in fatigue cracking of high strength concrete as ultra-thin whitetopping”, 2003.
[9] H. G. Russell and B. A. Graybeal, “Ultra-high performance concrete : a state-of-the-art report for the bridge community.”, n.o FHWA-HRT-13-060, jun. 2013, [Online]. Available: https://rosap.ntl.bts.gov/view/dot/26387
[10] Z. Wu, C. Shi, W. He, and D. Wang, “Static and dynamic compressive properties of ultra-high performance concrete (UHPC) with hybrid steel fiber reinforcements”, Cem. Concr. Compos., vol. 79, pp. 148-157, may 2017, doi: https://doi.org/10.1016/j.cemconcomp.2017.02.010
[11] S. V. Shann, “Application of ultra high performance concrete (UHPC) as a thin-bonded overlay for concrete bridge decks”, 2012.
[12] J. Dils, V. Boel, and G. De Schutter, “Influence of cement type and mixing pressure on air content, rheology and mechanical properties of UHPC”, Constr. Build. Mater., vol. 41, pp. 455-463, abr. 2013, doi: https://doi.org/10.1016/j.conbuildmat.2012.12.050
[13] C. Shi, Z. Wu, J. Xiao, D. Wang, Z. Huang, and Z. Fang, “A review on ultra high performance concrete: Part I. Raw materials and mixture design”, Constr. Build. Mater., vol. 101, pp. 741-751, dic. 2015, doi: https://doi.org/10.1016/j.conbuildmat.2015.10.088.
[14] P. Richard and M. Cheyrezy, “Composition of reactive powder concretes”, Cem. Concr. Res., vol. 25, n.o 7, pp. 1501-1511, 1995, doi: https://doi.org/10.1016/0008-8846(95)00144-2.
[15] O. Bonneau, M. Lachemi, É. Dallaire, J. Dugat, and P.-C. Aïtcin, “Mechanical properties and durability of two industrial reactive powder concretes”, ACI Mater. J., vol. 94, n.o 4, pp. 286-290, 1997. Doi: https://doi.org/10.14359/310.
[16] R. Yu, P. Spiesz, and H. J. H. Brouwers, “Static properties and impact resistance of a green Ultra-High Performance Hybrid Fibre Reinforced Concrete (UHPHFRC): Experiments and modeling”, Constr. Build. Mater., vol. 68, pp. 158-171, oct. 2014, doi: https://doi.org/10.1016/j.conbuildmat.2014.06.033.
[17] H. Yazıcı, H. Yiğiter, A. Ş. Karabulut, and B. Baradan, “Utilization of fly ash and ground granulated blast furnace slag as an alternative silica source in reactive powder concrete”, Fuel, vol. 87, n.o 12, pp. 2401-2407, sep. 2008, doi: https://doi.org/10.1016/j.fuel.2008.03.005
[18] Z. B. Haber, I. De la Varga, B. A. Graybeal, B. Nakashoji, and R. El-Helou, “Properties and Behavior of UHPC-Class Materials”, n.o FHWA-HRT-18-036, mar. 2018, [Online]. Available: https://rosap.ntl.bts.gov/view/dot/37528
[19] B. A. Graybeal, “UHPC IN THE U.S. HIGHWAY INFRASTRUCTURE: EXPERIENCE AND OUTLOOK”, Reinf. Concr., p. 10, 2013. doi: https://doi.org/10.1002/9781118557839.ch15
[20] J. Abellan, A. Nuñez, and S. Arango, “Pedestrian bridge of UNAL in Manizales: A new UHPFRC application in the Colombian building market”, 5th Int. Symp. Ultra-High Perform. Concr. High Perform. Concr. Mater., pp. 43-44, mar. 2020.
[21] O. Fischer, N. Schramm, and T. Lechner, “Pilot application of UHPFRC in railway bridge construction - Part 1: Background, conception, planning and scientific support”, mar. 2020. Doi: https://doi.org/10.1002/cend.201800005
[22] I. N. Here, Ultra-High Performance Concrete and Nanotechnology in Construction. Proceedings of Hipermat 2012. 3rd International Symposium on UHPC and Nanotechnology for High Performance Construction Materials. kassel university press GmbH, 2012.
[23] D. M. Carlesso, A. de la Fuente, and S. H. P. Cavalaro, “Fatigue of cracked high performance fiber reinforced concrete subjected to bending”, Constr. Build. Mater., vol. 220, pp. 444-455, sep. 2019, doi: https://doi.org/10.1016/j.conbuildmat.2019.06.038
[24] H. Zhang and K. Tian, “Properties and mechanism on flexural fatigue of polypropylene fiber reinforced concrete containing slag”, J. Wuhan Univ. Technol.-Mater Sci Ed, vol. 26, n.o 3, pp. 533-540, jun. 2011, doi: https://doi.org/10.1007/s11595-011-0263-8
[25] C01 Committee, “Standard Specification forPortland Cement. ASTM C150/C150M-20”, ASTM International. doi: https://doi.org/10.1520/C0150_C0150M-20
[26] C09 Committee, “Test Method for Compressive Strength of Cylindrical Concrete Specimens”, ASTM International. doi: https://doi.org/10.1520/C0039_C0039M-18
[27] ASTM C191, “ASTM C191-19 Standard Test Methods for Time of Setting of Hydraulic Cement by Vicat Needle”, ago. 01, 2019.
[28] ASTM C204-18, “Standard Test Methods for Fineness of Hydraulic Cement by Air-Permeability Apparatus”. https://www.astm.org/c0204-18.html
[29] J. Groeger, N. Tue, and K. Wille, “Bending Behaviour and Variation of Flexural Parameters”, en Proc. of 3rd Int. Symposium on UHPC and Nanotechnology for High Performance Construction Materials, Kassel, Germany, mar. 2012, pp. 419-426.
[30] S. Leonhardt, D. Lowke, and C. Gehlen, “Effect of Fibres on Impact Resistance of Ultra High Perfomance Concrete.”, en Proc. of 3rd Int. Symposium on UHPC and Nanotechnology for High Performance Construction Materials, 2012, pp. 811-817.
[31] D. Lowke, T. Stengel, P. Schießl, and C. Gehlen, “Control of rheology, strength and fibre bond of UHPC with additions-effect of packing density and addition type”, Ultra-High Perform. Concr. Nanotechnol. Constr. Proc. Hipermat 2012, n.o 19, pp. 215-224, 2012.
[32] C. Magureanu, I. Sosa, C. Negrutiu, and B. Heghes, “Mechanical properties and durability of ultra-high-performance concrete”, ACI Mater. J., vol. 109, n.o 2, p. 177, 2012, doi: https://doi.org/10.14359/51683704
[33] ASTM C78/C78M-18, “Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading)”. https://www.astm.org/c0078_c0078m-18.html (accedido nov. 30, 2021).
[34] E. S. Lappa, C. R. Braam, and J. C. Walraven, “Static and fatigue bending tests of UHPC”, en Proceedings of the International Symposium on Ultra-High Performance Concrete, Kassel, Germany, 2004, pp. 449-458.
[35] R. Mallick and T. El-Korchi, Pavement Engineering : Principles and Practice, CRC Press Taylor&Francis Group. CRC Press, 2009. doi: https://doi.org/10.1201/b14161
[36] F. R. Lizcano and H. R. Quintana, Pavimentos: Materiales, construcción and diseño. Ecoe Ediciones, 2015.
[37] H. Li, M. Zhang, and J. Ou, “Flexural fatigue performance of concrete containing nano-particles for pavement”, Int. J. Fatigue, vol. 29, n.o 7, pp. 1292-1301, jul. 2007, doi: https://doi.org/10.1016/j.ijfatigue.2006.10.004
[38] W. Wang, S. Wu, and H. Dai, “Fatigue behavior and life prediction of carbon fiber reinforced concrete under cyclic flexural loading”, Mater. Sci. Eng. A, vol. 434, n.o 1, pp. 347-351, oct. 2006, doi: https://doi.org/10.1016/j.msea.2006.07.080
[39] S. P. Singh, Y. Mohammadi, and S. K. Madan, “Flexural fatigue strength of steel fibrous concrete containing mixed steel fibres”, J. Zhejiang Univ.-Sci. A, vol. 7, n.o 8, pp. 1329-1335, ago. 2006, doi: https://doi.org/10.1631/jzus.2006.A1329
[40] S. P. Singh, “Fatigue strength of hybrid steel-polypropylene fibrous concrete beams in flexure”, Procedia Eng., vol. 14, pp. 2446-2452, 2011. Doi: https://doi.org/10.1016/j.proeng.2011.07.307
[41] Y. Lv, H. Cheng, and Z. Ma, “Fatigue performances of glass fiber reinforced concrete in flexure”, Procedia Eng., vol. 31, pp. 550-556, 2012. Doi: https://doi.org/10.1016/j.proeng.2012.01.1066
[42] S. V. Kolluru, E. F. O’Neil, J. S. Popovics, and S. P. Shah, “Crack Propagation in Flexural Fatigue of Concrete”, J. Eng. Mech., vol. 126, n.o 9, pp. 891-898, sep. 2000, doi: https://doi.org/10.1061/(ASCE)0733-9399(2000)126:9(891)
[43] S. J. Stephen and R. Gettu, “Fatigue fracture of fibre reinforced concrete in flexure”, Mater. Struct., vol. 53, pp. 1-11, 2020. Doi: https://doi.org/10.1617/s11527-020-01488-7
[44] F. A. R. Lizcano, Diseño racional de pavimentos. Ceja ; Escuela Colombiana De Ingenieria, 2003.
[45] C. Thomas, J. Sainz-Aja, J. Setien, A. Cimentada, and J. A. Polanco, “Resonance fatigue testing on high-strength self-compacting concrete”, J. Build. Eng., vol. 35, p. 102057, mar. 2021, doi: https://doi.org/10.1016/j.jobe.2020.102057
[46] D. Ruiz-Valencia, F. Rodríguez, and M. León-Neira, “Estudio del comportamiento a la fatiga de una mezcla de concreto para pavimentos reforzada con fibras metálicas”, Rev. Ing. Constr., vol. 32, n.o 2, pp. 45-58, ago. 2017, doi: https://doi.org/10.4067/S0718-50732017000200004
How to Cite
Torres, G., Romano, J., Vacca, H., Alvarado, Y., & Reyes, F. (2022). Fatigue Behavior of Ultrahigh-Performance Fiber-reinforced Concrete as an Alternative for Flexible Pavement Rehabilitation. Ingenieria Y Universidad, 26. https://doi.org/10.11144/Javeriana.iued26.fbuh
Section
Civil and environmental engineering