Published Mar 30, 2009



PLUMX
Google Scholar
 
Search GoogleScholar
Downloads


Tania Chanagá-Quiroz

Sonia Giraldo-Duarte

Luis Almanza-Pubiano

##plugins.themes.bootstrap3.article.details##

Abstract

The specific effects of varying the zeolite/matrix ratio in the fluid catalytic cracking (FCC) and the catalyst effects on activity and selectivity for light cycle oil (LCO) yield from the cracking of feedstocks of different physicochemical characteristics , were studied using a microactivity test (MAT) and two feedstocks, aliphatic and naphthenic. With a naphthenic feedstock, highest conversions, gasoline, LCO, dry gas and LPG yields are obtained by increasing zeolite/matrix ratio. Diminishment in slurry yield and in the quality of LCO due to the content of aromatics in LCO are also obtained. With aliphatic feedstock conversions, dry gas, LPG, gasoline and coke yields are improved; LCO and slurry yields are decreased with the increased use of zeolite in the catalyst. The quality of LCO is improved with aliphatic feedstocks; however, zeolite produced a negative effect on this quality.

Keywords

Zeolitas, catalizadores, aceite liviano de cicloZeolites, catalysts, light cycle oil

References
BHATTACHARYYA, D.; KUMAR, A. y VELAYUTHAM, A. Multi stage selective catalytic cracking process and a system for producing high yield of middle distillate products from heavy hydrocarbon feedstocks. U. S. Patente 7.029.571 B1, 2006.
CORMA CANÓS, A. y SAUVANAUD, L. How can increase the LCO yield and quality in the FCC: cracking pathways analysis. Petrochemical. 2006, vol. 51, núm. 2, pp. 47-451.
GILBERT, W.; BAPTISTA, C. y REZENDE, A. Exploring FCC flexibility to produce middistillate and petrochemicals. Rio de Janeiro: Petrobras R&D Center, 2006.
HARKINS, W. D. y JURA, G. An adsorption method for the determination of the area ofa a solid without the assumption of a molecular area, and the area occupied by nitrogen molecules on the surfaces of solids. Journal of Chemical Physics. 1943, vol. 11, núm. 9, p. 431.
HUMPPHRIES, A.; HARRIS, D. H. y O’CONNOR, P. The nature of active sites in zeolites: influence on catalyst performance. Fluid Catalytic Cracking, Studies in Surface Science and Catalysis. 1993, vol. 76, pp. 41-81.
JOAO, A. Curso de operadores de craqueo catalítico. Rio de Janeiro: Fabrica Carioca de Catalizadores S. A., 1999.
LETZSCH, W. y ASHTON, A. The effect of feedstock on yields and product quality. Fluid Catalytic Cracking: Science and Technology. Studies in Surface and Catalysis. 1993, vol. 76, pp. 441-494.
NAVARRO, U. Estudio del impacto de las condiciones de desactivación para simular a nivel de laboratorio las propiedades de catalizadores de equilibrio de ruptura catalítica. Doctorado en Química. Bogotá: Universidad Nacional de Colombia, 2002.
NIELSEN, R. H. y DOOLIN, P. K. Metals passivation. Fluid Catalytic Cracking Science and Technology. Studies in Surface Science and Catalysis. 1993, vol. 76, pp. 339-384.
NILSSON, P. y OTTERSTEDT, J. Effects of composition of the feedstock on the catalytic cracking of heavy vacuum gas oil. Applied Catalysis. 1987, vol. 33, pp. 145-156.
PETERS, A. W. Instrumental methods of FCC catalyst characterization. Fluid Catalytic Cracking Science and Technology. Studies in Surface Science and Catalysis. 1993, vol. 76, pp. 183-222.
RABO, J. Zeolite chemistry and catalysis. Washington: American Chemical Society Monograph, 1991. pp. 644-650.
REYMOND, J. P.; DESSALCES, G. y KOLENDA, F. Preparation of catalyst matrixes of controlled porous texture from silica and alumina sols. Preparation of Catalyst VII. New York: Elsevier-Delmon, 1998, pp. 735-744.
SCHERZER, J. Correlation between catalyst formulation and catalytic properties. Fluid Catalytic Cracking: Science and Technology. Studies in Surface and Catalysis. 1993, vol. 76, pp. 145-182.
—. Designing FCC catalysts with high-silica Y zeolites. Applied Catalysis. 1991, vol. 75, pp. 1-32.
SCHEUTTE, W. Hydrocarbon cracking catalysts and processes utilizing the same. Patente A2 0252761. 1988.
UPON, L. y SIKKAR, R. Effect of feedstock on catalyst performance. Applied Catalysis. 1982, vol. 2, pp. 87-105.
WELSH, W.; SEESE, M. y PETERS, A. Catalyst manufacture. U.S. Patente 4.458.023, 1984.
WOLTERMANN, G.; MAGEE, J. y GRIFFITH, S. Commercial preparation and characterization of FCC catalysts. Fluid Catalytic Cracking: Science and Technology. Studies in Surface and Catalysis. 1993, vol. 76, pp. 105-144.
YANIK, S. y O’CONNOR, P. FCC catalyst pore architecture and performance. Catalytic Cracking. AICHE symposium series. 1990, vol. 88, núm. 291, pp. 9-19.
ZHANG, J.; MAO, A. y Chan Z. Catalytic cracking process for increasing simultaneously the yields of diesel oil and liquefied gas. U.S. Patente 6.416.656 B1, 2002.
How to Cite
Chanagá-Quiroz, T., Giraldo-Duarte, S., & Almanza-Pubiano, L. (2009). Modification of the zeolite-matrix ratio in FCC catalysts and its impact on yields and quality of middle distillates. Ingenieria Y Universidad, 13(1). Retrieved from https://revistas.javeriana.edu.co/index.php/iyu/article/view/947
Section
Articles