Abstract
Fuzzy Cognitive Maps (FCM) has proven to be useful for representing both individual and collective mental models. Their capacity to be aggregated from individual FCM makes them suitable as a technique to assist in group decision making. For problems such as the análisis of complex systems and decision making usually is necessary a consensus process, to enable the group to achieve a state of mutual agreement among its members. In this paper a model for consensus processes in mental models using FCM and linguistic 2-tuple model as a form of causal knowledge representation is presented. The model includes automatic search mechanisms for conflict áreas and recommendations to the experts to bring closer their preferences. An illustrative example that corroborates the applicability of the model is described.
[2] G. Montibeller and V. Belton, “Causal maps and the evaluation of decision options-a review”, J Operat Res Soc, vol. 57, no. 7, pp. 779-791, 2006.
[3] J. Ross, “Assessing understanding of complex causal networks using an interactive game”, Dissertation. Information and Computer Science, University of California Irvine.
[4] N. A. Jones et al., “Mental models: an interdisciplinary synthesis of theory and methods”, Ecol Soc., vol. 16, no. 1, p. 46, 2011.
[5] P. M. Senge, La quinta disciplina: el arte y la práctica de la organización abierta al aprendizaje. Barcelona: Ediciones Granica, 2004.
[6] R. M. Axelrod, Structure of decision: The cognitive maps of political elites. Princeton NJ: Princeton University Press, 1976.
[7] S. P. Borgatti et al., “Network measures of social capital”, Connections, vol. 21, no. 2, pp. 27-36, 1998.
[8] C. Puente Águeda et al., “Estudio de las relaciones causales”, An mec electr., vol. 87, pp. 54-59, 2010.
[9] B. Kosko, “Fuzzy cognitive maps”, Int J Man-Machine Studies, vol. 24, no. 1, pp. 65-75, 1986.
[10] C. W. Ping, A methodology for constructing causal knowledge model from fuzzy cognitive map to bayesian belief network. Buk-gu, Gwangju, Corea del Sur: Chonnam National University, 2009.
[11] E. I. Papageorgiou and J. L. Salmeron, “A review of fuzzy cognitive maps research during the last decade”, IEEE Transactions on Fuzzy Systems, 2012.
[12] M. Štajdohar and J. Demšar, “Interactive network exploration with orange”, J Statist Software, vol. 53, no. 6, pp. 1-24, 2013.
[13] S. Gray, E. Zanre, and S. R. J. Gray, “Fuzzy cognitive maps as representations of mental models and group beliefs”, en Fuzzy Cognitive Maps for Applied Sciences and Engineering. Berlín Heidelberg: Springer, 2014, pp. 29-48.
[14] N. Bryson, “Generating consensus fuzzy cognitive maps”, en 1997 IASTED International Conference on Intelligent Information Systems (IIS ‘97), Grand Bahama Island, 1997.
[15] F. Mata, L. Martínez, and E. Herrera-Viedma, “An adaptive consensus support model for group decision-making problems in a multigranular fuzzy linguistic context”, Fuzzy Systems, IEEE Transactions, vol. 17, no. 2, pp. 279-290, 2009.
[16] E. Herrera-Viedma et al., “Applying Linguistic OWA operators in consensus models under unbalanced linguistic information”, en Recent developments in the ordered weighted averaging operators: theory and practice, Berlin Heidelberg: Springer, 2011. pp. 167-186.
[17] M. Espinilla et al., “An extended hierarchical linguistic model for decision‐making problems”, Comput Intell., vol. 27, no. 3, pp. 489-512, 2011.
[18] S. Bueno and J. L. Salmeron, “Benchmarking main activation functions in fuzzy cognitive maps”, Expert Syst Appl., vol. 36, no. 3, pp. 5221-5229, 2009.
[19] J. L. Salmeron, “Augmented fuzzy cognitive maps for modelling LMS critical success factors”, Knowledge-Based Syst. vol. 22, no. 4, pp. 275-278, 2009.
[20] J. L. Salmeron, “Supporting decision makers with fuzzy cognitive maps”, Res Technol Manag., vol. 52, no. 3, pp. 53-59, 2009.
[21] J. L. Salmeron et al., “Ranking fuzzy cognitive map based scenarios with TOPSIS”, Expert Syst Appl., vol. 39, no. 3, pp. 2443-2450, 2012.
[22] H. A. Linstone and M. Turoff, The Delphi Method: tecniques and applications. Massachusetts: Addison-Wesley, 1979.
[23] M. Bunge, Causality and modern sciences. Nueva York: Dover, 1979.
[24] F. Mata, “Modelos para sistemas de apoyo al consenso en problemas de toma de decisión en grupo definidos en contextos lingüisticos multigranulares”, tesis doctoral, Universidad de Jaén. Escuela Politécnica Superior de Jaén, Departamento de informática, Jaén, España, 2006.
[25] M. Leyva-Vázquez et al., “Técnicas para la representación del conocimiento causal. Un estudio de caso en Informática Médica”, ACIMED, vol. 24, no. 1, pp. 73-83, 2013.
[26] M. Leyva Vázquez et al., “Modelo para el análisis de escenarios basados en mapas cognitivos difusos: estudio de caso en software biomédico”, Ing Univ., vol. 17, no. 2, pp. 375-390, 2013.
[27] J. L. Salmeron, “Modelling grey uncertainty with fuzzy grey cognitive maps”, Expert Syst Appl., vol. 37, no. 12, pp. 7581-7588, 2010.
[28] E. Papageorgiou et al., “Introducing Interval Analysis in Fuzzy Cognitive Map Framework” en: ABerlin Heidelberg: Springer, 2006. pp. 571-575.
[29] D. K. Iakovidis and E. Papageorgiou, “Intuitionistic fuzzy cognitive maps for medical decision making”, Inf Technol Biomed, IEEE Transactions on, vol. 15, no. 1, pp. 100-107, 2011.
[30] K. P. Teruel, M. Leyva Vázquez y M. Espinilla Estévez, “Computación con palabras en la toma decisiones mediante mapas cognitivos difusos”, RCCI, vol. 8, no. 2, pp. 19-34, 2014.
[31] M. S. Khan and M. Quaddus, “Group decision support using fuzzy cognitive maps for causal reasoning”, Group Decis Negot., vol. 13, no. 5, pp. 463-480, 2004.
[32] W. Stach, “Learning and aggregation of fuzzy cognitive maps-An evolutionary approach” ERA, tesis doctoral, Department of Electrical and Computer Engineering, University of Alberta, 2011.
[33] F. Herrera et al., “Computing with words in decision making: foundations, trends and prospects”, Fuzzy Optimiz Decision Making, vol. 8, no. 4, pp. 337-364, 2009.
[34] K. Pérez-Teruel et al., “A linguistic software requirement prioritization model with heterogeneous information. 4th International Workshop on Knowledge Discovery, Knowledge Management and Decision Support (EUREKA 2013)”, en Mazatlán, México, 2013.
[35] F. Herrera and L. Martínez, “A 2-tuple fuzzy linguistic representation model for computing with words”, Fuzzy Systems, IEEE Transactions, vol. 8, no. 6, pp. 746-752, 2000.
[36] M. E. Newman, “Coauthorship networks and patterns of scientific collaboration”, Proceed Nat Acad Sci., vol. 101(suppl 1), pp. 5200-5205, 2004.
[37] F. P. Brooks Jr, The mythical man-month, anniversary edition: essays on software engineering. Boston: Addison Wesley, 1995.
This journal is registered under a Creative Commons Attribution 4.0 International Public License. Thus, this work may be reproduced, distributed, and publicly shared in digital format, as long as the names of the authors and Pontificia Universidad Javeriana are acknowledged. Others are allowed to quote, adapt, transform, auto-archive, republish, and create based on this material, for any purpose (even commercial ones), provided the authorship is duly acknowledged, a link to the original work is provided, and it is specified if changes have been made. Pontificia Universidad Javeriana does not hold the rights of published works and the authors are solely responsible for the contents of their works; they keep the moral, intellectual, privacy, and publicity rights.
Approving the intervention of the work (review, copy-editing, translation, layout) and the following outreach, are granted through an use license and not through an assignment of rights. This means the journal and Pontificia Universidad Javeriana cannot be held responsible for any ethical malpractice by the authors. As a consequence of the protection granted by the use license, the journal is not required to publish recantations or modify information already published, unless the errata stems from the editorial management process. Publishing contents in this journal does not generate royalties for contributors.