Revisión de los materiales fotocatalíticos para la producción de hidrógeno a partir de h2s
PDF

Palabras clave

fotocatálisis
sulfuro de hidrógeno
hidrógeno

Cómo citar

Revisión de los materiales fotocatalíticos para la producción de hidrógeno a partir de h2s. (2011). Ingenieria Y Universidad, 15(1), 171-195. https://doi.org/10.11144/Javeriana.iyu15-1.rmfp
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar

Resumen

A partir del trabajo realizado por Fujishima y Honda, en 1972, en el cual se consiguió disociar electroquímicamente el agua sobre un electrodo de TiO2, numerosos investigadores han estudiado la disociación del agua y del H2S usando fotoelectrodos o fotocatalizadores para la producción de hidrógeno. Las investigaciones actuales se enfocan en la síntesis de un material estable y con capacidad de absorber luz visible. Al igual que la actividad catalítica del material, el diseño del reactor influye en la posibilidad de aplicar las reacciones fotocatalíticas a los procesos industriales. Hasta el momento han sido ensayados diversos tipos de reactores, pero muy pocos trabajos han logrado reproducir exitosamente los resultados obtenidos en el laboratorio. En este artículo se presenta una revisión de la situación actual de los materiales heterogéneos desarrollados para la producción de hidrógeno a partir de la conversión directa e indirecta del sulfuro de hidrógeno. Adicionalmente, se plantean esquemas en los cuales es posible integrar los procesos fotoasistidos a los industriales empleados para la disposición del H2S.

PDF

ALONSO-VANTE, N. Electroquímica y electrocatálisis. Materiales: aspectos fundamentales y aplicaciones. Vol. Ib. Buenos Aires: s. e., 2003.
BARBENI, M. et al. Hydrogen from hydrogen sulfide cleavage. Improved efficiencies via modification of semiconductor particulates. International Journal of Hydrogen Energy, 1985, núm. 10, pp. 249-253.
BERMAN, A.; KARN, R. y EPSTEIN, M. A new catalyst system for high-temperature solar reforming of methane. Energy and Fuels. 2006, vol. 20, pp. 455-462.
BORGARELLO, E. y SERPONE, N. Hydrogen production through microheterogeneous photocatalysis of hydrogen sulfide cleavage: The thyosulfate cycle. International Journal of Hydrogen Energy. 1985, núm. 10, pp. 737-741.
BORRELL, L.; CERVERA-MARCH, S.; GIMÉNEZ, J. y SIMARRO, R. A comparative study of CdS-based semiconductor photocatalysts for solar hydrogen production from sulphide+sulphite substrates. Solar Energy Materials and Solar Cells. 1992, núm. 25, pp. 25-39.
CERVERA-MARCH, L. et al. Solar hydrogen photoproduction from sulphide/sulphite substrate. International Journal of Hydrogen Energy. 1992, vol. 17, núm. 9, pp. 683-688.
CHEN, D. y YE, J. Photocatalytic H2 evolution under visible light irradiation on Ag In5S8 photocatalyst. Journal of Physics and Chemistry of Solids. 2007, núm. 68, pp. 2317-2320.
DAHL, J.; TAMBURINI, J. y WEIMER, A Solar-thermal processing of methane to produce hydrogen and syngas. Energy and Fuels. 2001, núm. 15, pp. 1227-1232.
DE, G.; ROY, A. y BHATTACHARYA, S. Photocatalytic production of hydrogen and concomitant cleavage of industrial waste hydrogen sulphide. International Journal of Hydrogen Energy. 1995, vol. 20, núm. 2, pp. 127-131.
ELSNER, M.; MENGEB, M.; MÜLLER, C. y AGAR, D. The Claus process: teaching an old dog new tricks. Catalysis Today. 2003, vol. 79, núm. 80, pp. 487-494.
FU, X et al. Photocatalytic performance of tetragonal and cubic β-In2S3 for the water splitting under visible light irradiation. Applied Catalysis B: Environmental. 2010, núm. 95, pp. 393-399.
FUJISHIMA, A. y HONDA, K. Electrochemical photolysis of water at a semiconductor electrode. Nature. 1972, núm. 238, pp. 37-38.
GERVEN, T. et al. A review of intensification of photocatalytic processes. Chemical Engineering and Processing. 2007, núm. 46, pp. 781-789.
GRIGORIEV, S.; POREMBSKY, V. y FATEEV, V. Pure hydrogen production by PEM electrolysis for hydrogen energy. International Journal of Hydrogen Energy. 2006, vol. 31, núm. 2, pp. 171-175.
GUIJUN, M. et al. Photocatalytic splitting of H2S to produce hydrogen by Gas-Solid pase reaction. Chinese Journal of Catalysis. 2008, núm. 29, pp. 313-315.
GUPTA, R. Hydrogen fuel: production, transport and storage. s. l.: CRC Press, 2009.
ISHIKAWA, A. et al. Oxysulfide Sm2Ti2S2O5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation (λ≤650 nm). Journal of the American Chemical Society. 2002, núm. 124, pp. 13547-13553.
JANG, J. et al. AgGaS2-type fotocatalysts for hydrogen production under visible light. Effects of post-synthetic H2S treatment. Journal of Solid State Chemistry. 2007, núm. 180, pp. 1110-1118.
JANG, J. et al. Indium induced band gap tailoring in AgGa1-xInxS2 chalcopyrite structure for visible light photocatalysis. Journal of Physical Chemistry. 2008, núm. 128, pp. 154717-154723.
JANG, J. et al. Role of platinum-like tungsten carbide as cocatalyst of CdS photocatalyst for hydrogen production under visible light irradiation. Applied Catalysis A: General. 2008, núm. 346, pp. 149-154.
JANG, J.; KIM, H.; BORSE, P. y LEE, J. Simultaneous hydrogen production and decomposition of H2S dissolved in alkaline water over Cd-TiO2 composite photocatalysts under visible light irradiation. International Journal of Hydrogen Energy. 2007, núm. 32, pp. 4786-4791.
JANG, J.; LI, W.; OH, S. y LEE, J. Fabrication of CdS/TiO2 nano-bulk composite photocatalysts for hydrogen production from aqueous H2S Solutions under visible light. Chemical, Physics Letters. 2006, núm. 425, pp. 278-282.
KAKUTA, N. et al. Photoassisted hydrogen production using visible light and coprecipitated ZnS-CdS without noble metal. Journal of Physical Chemistry. 1985, núm. 89, pp. 732-734.
KATO, H. y KUDO, A. Water splitting into H2 and O2 on Alkali Tantalate Photocatalysts ATaO3 (A) Li, Na, and K. The Journal of Physical Chemistry B. 2001, núm. 105, pp. 4285-4292.
KOBAYAKAWA, K.; TERANISHI, A.; TSURUMAKI, T.; SATO, Y. y FUJUSHIMA, A. Photocatalytic activity of CuInS2 and CuIn5S8. Electrochimica Acta. 1992, vol. 37, núm. 3, pp. 465-467.
KOCA, A. y SAHIN, M. Photocatalytic hydrogen production by direct sun light from sulfide/sulfite solution. International Journal of Hydrogen Energy. 2002, núm. 27, pp. 363-367.
KODAMA, T.; OHTAKE, H.; SHIMIZU, K. y KITAYAMA, Y. Nickel catalyst driven by direct light irradiation for solar CO2-reforming of methane. Energy and Fuels. 2002, núm. 16, pp. 1016-1023.
KODAMA, T.; KIYAMA, A. y SHIMIZU, K. Catalytically activated metal foam absorber for light-to-chemical energy conversion via solar reforming of methane. Energy and Fuels. 2003, núm. 17, pp. 13-17.
KOSANIC, M. y TOPALOV, A. Photochemical hydrogen production from CdS/RhOx/Na2S. dispersions. International Journal of Hydrogen Energy. 1990, núm. 15, pp. 319-323.
KUDO, A. Development of photocatalyst materials for water splitting. International Journal of Hydrogen Energy. 2006, núm. 31, pp. 197-202.
KUDO, A. y MISEKI, Y. Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews. 2009, núm. 38, pp. 253-278.
KUDO, A. y SCKIZAWA, M. Photocatalytic H2 evolution under visible light irradiation on Ni-doped ZnS photocatalyst. Chemical Communications, 2000, pp. 1371-1372.
KUDO, A. et al. H2 evolution from aqueous potassium sulfite solutions under visible light irradiation over a novel sulfide photocatalyst NaInS2 with a layered structure. Chemical Letters, 2002, núm. 31, pp. 882-883.
LEI, Z. et al. Photocatalytic water reduction under visible light on a novel ZnIn2S4 catalyst synthetized by hydrothermal method. Chemical Communications. 2003, pp. 2142-2143.
LEI, Z. et al. Sulfur-substituted and zinc-doped In(OH)3: A new class of catalyst for photocatalytic H2 production from water under visible light illumination. Journal of Catalysis. 2006, núm. 237, pp. 322-329.
LIANG, H. y GUO, L. Synthesis characterization and photocatalytic performances of Cu2MoS4. International Journal of Hydrogen Energy. 2010.
LINKOUS, C.; MURADOV, N. y RAMSER, S. Consideration of reactor design for solar hydrogen production from hydrogen sulfide using semiconductor particulates. International Journal of Hydrogen Energy. 1995, núm. 20, pp. 701-709.
LU, G. y LI, S. Hydrogen production by H2S photodecomposition on ZnFe2O4. International Journal of Hydrogen Energy. 1992, núm. 17, pp. 767-770.
MA, G.; YAN, H.; SHI, Y.; ZONG, X.; LEI, Z. y LI, C. Direct splitting of H2S into H2 and S on CdS- based photocatalyst under visible light irradiation. Journal of Catalisys. 2008, núm. 260, pp. 134-140.
MATSUMURA, M.; SAHO, Y. y TSUBOMURA, H. Photocatalytic hydrogen production from solutions of sulfite using platinized cadmium sulfide power. Journal of Physical Chemistry. 1983, núm. 87, pp. 3807-3808.
MUIR, J.; HOGAN, R.; RUSSELL, J.; SKOCYPEC, D. y BUCK, R. Solar reforming of methane in a direct absorption catalytic reactor on a parabolic dish: Test and analysis. Solar Energy. 1994, vol. 52, núm. 6, pp. 467-471.
MURADOV, N. y VEZIROGLU, T. Green path from fossil-based to hydrogen economy, pp. An overview of carbon-neutral technologies. International Journal of Hydrogen Energy. 2008, núm. 33, pp. 6804-6839.
NAMAN, S. Comparison between thermal decomposition and photosplitting of H2S over VxSy supported on oxides at 450–550°C in a static system. International Journal of Hydrogen Energy. 1992, núm. 17, pp. 499-504.
NAMAN, S. y AL-EMARA, K. Hydrogen from hydrogen sulfide cleavage, the stability and efficiency of VO/VS mixed semiconductor dispersion. International Journal of Hydrogen Energy. 1987, núm. 12, pp. 629-632.
NAMAN, S. y GRATZEL, M. Visible-Light generation of hydrogen from hydrogen sulphide in aqueous solutions of ethanolamines containing vanadium sulphide dispersions. Journal of Photochemistry and Photobiology A: Chemistry. 1994, núm. 77, pp. 249-253.
NAMAN, S.; ALIWI, S. y AL-EMARA, K. Hydrogen production from the splitting of H2S by visible light irradiation of vanadium sulfides dispersion loaded with RuO2. International Journal of Hydrogen Energy. 1986, núm. 11, pp. 33-38.
NAMAN, S.; AL-MISHHADANI, N. y AL-SHAMMA, L. Photocatalytic production of hydrogen from hydrogen sulfide in ethanolamine aqueous solution containing semiconductors dispersion. International Journal of Hydrogen Energy. 1995, núm. 20, pp. 303-307.
NAVARRO, R.; DEL VALLE, F. y FIERRO, J. Photocatalytic hydrogen evolution from CdSZnO-CdO systems under visible light irradiation: Effect of thermal treatment and presence of Pt and Ru cocatalysts. International Journal of Hydrogen Energy. 2008, núm. 33, pp. 4265-4273.
NAVARRO, R. et al. Water splitting on semiconductor catalyst under visible-light irradiation. ChemSusChem. 2009, núm. 2, pp. 471-485.
PIATKOWSKI, N. y STEINFELD, A. Solar-driven coal gasification in a thermally irradiated packed-bed reactor. Energy and Fuels. 2008, núm. 22, pp. 2043-2052.
REBER, J. y MEIER, K. Photochemical production of hydrogen with zinc sulfide suspensions. Journal of Physical Chemistry. 1984, núm. 88, pp. 5903-5913.
REBER, J. y RUSEK, M. Photochemical hydrogen production with platinized suspensions of cadmium sulfide and cadmium zinc sulfide modified by silver sulfide. Journal of Physical Chemistry. 1986, núm. 90, pp. 824-834.
RUFUS, I.; RAMAKRISHNAN, V.; VISWANATHAN, B. y KURIACOSE, J. Rhodium and rhodium sulfide coated cadmium sulfide as a photocatalyst for photochemical decomposition of aqueous sulfide. Langmuir. 1990, núm. 6, pp. 565-567.
SABATÉ, J.; CERVERA-MARCH, S.; SIMARRO, R. y GIMÉNEZ, J. A comparative study of semiconductor photocatalysts for hydrogen production by visible light using different sacrificial substrates in aqueous media. International Journal of Hydrogen Energy. 1990, núm. 15, pp. 115-124.
SHANGGUAN, W. y YOSHIDA, A. Synthesis and photocatalytic properties of CdS-intercalated metal oxides. Solar Energy Materials and Solar Cells. 2001, núm. 69, pp. 189-194.
SHEN, S.; ZHAO, L.; ZHOU, Z. y GUO, L. Enhanced photocatalytic hydrogen evolution over Cu-doped ZnIn2S4 under visible light irradiation. Journal of Physical Chemistry. 2008, núm. 112, pp. 16148-16155.
SHENGLI, G.; QINGZHANG, D. y YU, J. A New Visible-Light Photocatalyst: CdS Quantum Dots Embedded Mesoporous TiO2. Enviromental Science & Technology. 2009, vol. 43, núm. 18, pp. 7079-7085.
STEINBERG, M. y CHENG, H. (1989). Modern and prospective technologies for hydrogen production from fossil fuels. International Journal of Hydrogen Energy. 1989, vol. 14, núm. 11, pp. 797-820.
TAMBWEKAR, S. y SUBRAHMANYAM, M. Photocatalytic generation of hydrogen from hydrogen sulfide: An energy bargain. International Journal of Hydrogen Energy. 1997, núm. 22, pp. 959-965.
TAQUI KHAN, M.; BHARDWAJ, R. y BHARDWAJ, C. Photodecomposition of H2S by silver doped cadmium sulfide and mixed sulfides with ZnS. International Journal of Hydrogen Energy. 1988, núm. 13, pp. 7-10.
TROMMER, D. et al. Hydrogen production by steam-gasification of petroleum coke using concentrated solar power—I. Thermodynamic and kinetic analyses. International Journal of Hydrogen Energy. 2005, núm. 30, pp. 605-618.
TSUJI, I. y KUDO, A. H2 evolution from aqueous sulfite solutions under visible-light irradiation over Pb and halogen-codoped ZnS photocatalysts. Journal of Photochemistry and Photobiology A: Chemistry. 2003, núm. 156, pp. 249-252.
TSUJI, I.; KATO, H. y KUDO, A. Photocatalytic hydrogen evolution on ZnS- CuInS2 - AgInS2 solid solution photocatalysts with visible light absorption bands. Chemistry of Materials. 2006, núm. 18, pp. 1969-1975.
TSUJI, I.; KATO, H.; KOBAYASHI, H. y KUDO, A. Photocatalytic H2 evolutiom reaction from aqueous solutions over band structure-controlled (Ag)InxZn2(1-x)S2 solid solution photocatalysts with visible-light response and their surface nanostructure. Journal of the American Chemical Society. 2004, núm. 126, pp. 13406-13413.
TSUJI, I.; KATO, H.; KOBAYASHI, H. y KUDO, A. Photocatalytic H2 evolution under visiblelight irradiation over band-structured-controlled (CuIn)xZn(1-x)S2 solid solutions. The Journal of Physical Chemistry B. 2005, núm. 109, pp. 7323-7329.
VALLE, F. et al. Influence of Zn concentration in the activity of Cd1xZnxS solid solutions for water splitting under visible light. Catalysis Today. 2009, núm. 143, pp. 51-56.
VAN GERVEN, T. et al. A review of intensification of photocatalytic processes. Chemical Engineering and Processing. 2007, nú´m. 46, pp. 781-789.
VUCEMILOVIC, M.; VUKELIC, N. y RAJH, T. Solubility and photocorrosion of small CdS particles. Journal of Photochemistry and Photobiology A: Chemistry. 1988, vol. 42, núm. 1, pp. 157-167.
WANG, X.; LUI, G.; LU, G. y CHENG, H. Stable photocatalytic hydrogen evolution from water over ZnO-CdS core-shell nanorods. International Journal of Hydrogen Energy. 2010.
WÖRNER, A. y TAMME, R. CO2 reforming of methane in a solar driven volumetric receiverreactor. Catalysis Today. 1998, núm. 46, pp. 165-174.
XING, C.; ZHANG, Y.; YAN, W. y GUO, L. Band structure-controlled solid solution of Cd1-xZnxS photocatalyst for hydrogen production by water splitting. International Journal of Hydrogen Energy. 2006, núm. 31, pp. 2018-2024.
YAN, H. et al. Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt/PdS/CdS photocatalyst. Journal of Catalysis. 2009, núm. 266, pp. 165-168.
YOSHIDA, S. et al. Coal/CO2 Gasification System Using Molten Carbonate Salt for Solar/Fossil Energy Hybridization. Energy and Fuels. 1999, núm. 13, pp. 961-964.
Z’GRAGGEN, A. et al. Hydrogen production by steam-gasification of petroleum coke using concentrated solar power—II. Reactor design, testing, and modeling. International Journal of Hydrogen Energy. 2006, núm. 31, pp. 797-811.
ZHANG, W. y ZU, R. Surface engineered active photocatalysts without noble metals. CuSZnxCd1-xS nanospheres by one-step synthesis. International Journal of Hydrogen Energy. 2009, núm. 34, pp. 8495-8503.
ZHANG, W.; ZHONG, Z.; YONGSHENG, W. y XU, R. Doped solid solution: (Zn0.95Cu0.05)1-xCdxS nanocrystals with high activity for H2 evolution from aqueous solutions under visible light. The Journal of Physical Chemistry C. 2008, núm. 112, pp. 17635-17642.
ZHENG, N.; BU, X.; VU, H. y FENG, P. Open-framework chalcogenides as visible-light photocatalysts for hydrogen generation from water. Angewandte Chemie. 2003, vol. 44, núm. 33, pp. 5299-5303.

Una vez aceptado un trabajo para publicación la revista podrá disponer de él en toda su extensión, tanto directamente como a través de intermediarios, ya sea de forma impresa o electrónica, para su publicación ya sea en medio impreso o en medio electrónico, en formatos electrónicos de almacenamiento, en sitios de la Internet propios o de cualquier otro editor. Este uso tiene como fin divulgar el trabajo en la comunidad científica y académica nacional e internacional y no persigue fines de lucro. Para ello el autor o los autores le otorgan el permiso correspondiente a la revista para dicha divulgación mediante autorización escrita.

Todos los articulos aceptados para publicación son sometidos a corrección de estilo. Por tanto el autor /los autores autorizan desde ya los cambios sufridos por el artículo en la corrección de estilo.

El autor o los autores conservarán los derechos morales y patrimoniales del artículo.