Resumen
Objetivo: identificar y caracterizar fenómenos hidrodinámicos subsincrónicos en una bomba centrífuga de baja velocidad específica, tomando como referencia su curva característica de cuatro cuadrantes. Materiales: la bomba objeto de estudio se trató de una ITT Goulds de 1,5 HP, la cual fue instrumentada con sensores de presión, un acelerómetro, un sensor de torque y un tacómetro. La medición de flujo se hizo con un medidor de flujo ultrasonido. Métodos: análisis en el dominio del tiempo y de la frecuencia, en conjunto con análisis de fase, fueron usados para caracterizar componentes espectrales asociados a fenómenos hidrodinámicos como el rotating stall y el surge. Resultados y discusión: en esta investigación se propuso un método alternativo para el análisis de fase utilizando las señales de presión sin filtrar. En lo relacionado con los fenómenos hidrodinámicos, la evidencia recogida sugiere la existencia de rotating stall en varios puntos de la curva de cuatro cuadrantes, y, en el tercer cuadrante, la coexistencia de rotating stall y surge. Conclusiones: los resultados del método propuesto para el análisis de fase fueron coherentes con los del método basado en la correlación cruzada. La instrumentación y los métodos considerados en la investigación permitieron recoger evidencias para la identificación de algunos fenómenos subsincrónicos.
M. Rossi, M. Righetti, and M. Renzi, “Pump-as-Turbine for energy recovery applications: The case study of an aqueduct,” Ener. Procedia, vol. 101, pp. 1207–1214, Nov. 2016. Available: https://doi.org/10.1016/j.egypro.2016.11.163
M. Crespo et al., “Potential energy recovery using micro‐hydropower technology in irrigation networks: Real‐world case studies in the south of Spain,” Proceedings, vol. 2, no. 11, Aug. 2018, Art. no. 679. doi: 10.3390/proceedings2110679
M. Patelis, V. Kanakoudisa, and K. Gonelas, “Pressure management and energy recovery capabilities using PATs,” Proc. Eng., vol. 162, pp. 503–510, Nov. 2016. Available: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjmo7CWycntAhXwdN8KHZnKA08QFjAAegQIARAC&url=https%3A%2F%2Fcyberleninka.org%2Farticle%2Fn%2F1466062.pdf&usg=AOvVaw0r9fgCYVqRDpRNKPIJWbxe
B. Orchard and S. Klos, “Pumps as turbines for water industry,” World Pumps, pp. 22–23, Aug. 2009. doi: 10.1016/S0262-1762(09)70283-4
A. Morabito and P. Hendrick, “Pump as turbine applied to micro energy storage and smart water grids: A case study,” App. Energy, vol. 241, pp. 567–579, May. 2019. doi: 10.1016/j.apenergy.2019.03.018
S. Berten, P. Dupont, L. Fabre, M. Kayal, and F. Avellan, “Experimental investigation of flow instabilities and rotating stall in a high-energy centrifugal pump stage,” in Proc. ASME FEDSM2009, Vail, Colorado, USA, 2009, pp. 505–513. Available: https://doi.org/10.1115/FEDSM2009-78562
J. Day, “Stall, surge, and 75 years of research,” J. Turbomach., vol. 138, Jan. 2016, Art. no. 011001. vailable: https://doi.org/10.1115/1.4031473
U. Ullum et al., “Prediction of rotating stall within an impeller of a centrifugal pump based on spectral analysis of pressure and velocity data,” J. Phys. Conf. Ser., vol. 52, pp. 36–45, 2006. doi: 10.1088/1742-6596/52/1/004
V. Hasmatuchi, M. Farhat, S. Roth, F. J. Botero, and F. Avellan, “Experimental evidence of rotating stall in a pump-turbine at off-design conditions in generating mode,” J. Fluids Eng., vol. 133, no. 5, May 2011, Art. no. 051104. doi: 10.1115/1.4004088
O. Braun, “Part load flow in radial centrifugal pumps,” Ph.D. thesis, Lab. de Mach. Hyd., EPFL, Lausanne, Suisse, 2009.
F. Botero, V. Hasmatuchi, S. Roth, and M. Farhat, “Non-intrusive detection of rotating stall in pump-turbines,” Mech. Sys. Sig. Process., vol. 48, no. 1-2, pp. 162–173, Oct. 2014.
D. A. Johnson, N. Pedersen, and C. B. Jacobsen, “Measurements of rotating stall inside a centrifugal pump impeller,” in Proc. ASME FEDSM2005, Houston, Texas, USA, 2005, pp.1281–1288. Available: https://doi.org/10.1115/FEDSM2005-77313
Hydraulic turbines, storage pumps and pump-turbines-Model acceptance tests, CEI/IEC 60193, 1999.
K. Kaupert and T. Staubli, “The unsteady pressure field in a high specific speed centrifugal pump impeller—Part II: Transient hysteresis in the characteristic,” J. Fluids Eng., vol. 121, no. 9, pp. 627–632, Sep. 1999. Available: https://doi.org/10.1115/1.2823515
Y. Fu et al., “Numerical and experimental analysis of flow phenomena in a centrifugal pump operating under low flow rates,” J. Fluids Eng., vol. 137, no. 1, Jan. 2015, Art. no. 011102. Available: https://doi.org/10.1115/1.4027142
Lei, C. et al., “Numerical investigation on the rotating stall characteristics in a three-blade centrifugal impeller,” in Proc. IMECE2016, Phoenix, AZ, USA, 2016, Art. no. 65794.
N. Zhang, M. Yang, B. Gao, Z. Li, and D. Ni, “Unsteady pressure pulsation and rotating stall characteristics in a centrifugal pump with slope volute,” Adv. Mech. Eng., vol. 6, Feb. 2015, Art. no. 710791. Available: https://doi.org/10.1155/2014/710791
NI, “Módulos CompaqRio”. https://www.ni.com/es-co/shop/hardware/compactrio-modules-category.html#
G&L Series SSH-C and SSH-F Installation, Operation and Maintenance Instructions, ITT Goulds Pumps. Available: https://manualsbrain.com/es/manuals/1065761/
R. T. Knapp, “Complete characteristics of centrifugal pumps and their use in the prediction of transient behavior,” ASME Transac., pp. 683–689. Nov. 1937. Available: https://authors.library.caltech.edu/48235/1/Complete%20Characteristics%20of%20Centrifugal%20Pumps%20and%20Their%20Use%20in%20the%20Prediction%20of%20Transient%20Behavior.pdf
H. Bolaños, “Fenómenos hidrodinámicos periódicos en una bomba centrífuga de baja velocidad específica,” M.S. thesis, Esc. Ing., Universidad Eafit, Medellín, Colombia, 2018. Available: https://repository.eafit.edu.co/bitstream/handle/10784/12998/Hern%E1nDar%EDo_Bola%F1osArias_2018.pdf?sequence=2
R. Best, J. G. C. LaFlamme, and W. C. Moffatt, “Flow measurements in rotating stall in a gas turbine engine compressor,” in Proc. ASME Gas Turbine Aeroeng. Congr., Amsterdam, The Netherlands, 1988, Art. no. 88-GT-219.
J. Fortin and W. C. Moffatt, “Inlet flow distortion effects on rotating stall,” in Proc. ASME Gas Turbine Aeroeng. Congr. and Expo., Brussels, Belgium, 1990, Art. no. 90-GT-215. Available: https://bit.ly/2W6bDsR
C. E. Brennen, “Pump vibration,” in Hydrodynamics of Pumps, New York, NY, USA: Cambridge University Press, 2011, pp. 137–171.
X. Escaler, E. Egusquiza, M. Farhat, F. Avellan, and M. Coussirat, “Detection of cavitation in hydraulic turbines,” Mech. Sys. Sig. Process., vol. 20, no. 4, pp. 983–1007, May 2006.
R. S. Miskovish and C. E. Brennen, “Some unsteady fluid forces on pump impellers,” J. Fluids Eng., vol. 114, no. 4, pp. 632–637, Dec. 1992. Available: https://doi.org/10.1115/1.2910078
P. Dörfler et al., “Stability-related unsteady phenomena,” in Flow-induced pulsation and vibration in hydroelectric machinery, London, UK: Springer, 2013, pp. 143–161.
M. Sinha, A. Pinarbasi, and J. Katz, “The flow structure during onset and developed states of rotating stall within a vaned diffuser of a centrifugal pump,” J. Fluids Eng., vol. 123, no. 9, pp. 490–499, Sep. 2001. Available: https://doi.org/10.1115/1.1374213
C. Widmer, T. Staubli, and N. Ledergerber, “Unstable characteristics and rotating stall in turbine brake operation of pump-turbines,” J. Fluids Eng., vol. 133, no. 4, Apr. 2011, Art. no. 041101. Available: https://doi.org/10.1115/1.4003874

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Derechos de autor 2021 Hernan Dario Bolaños, Msc, Francisco Botero, PhD