Evaluación del comportamiento de aceros de toberas aceros de toberas en biocombustible
HTML Full Text (Inglés)
PDF (Inglés)
PDF
XML (Inglés)

Palabras clave

Biocombustible
Toberas
Acero inoxidable

Cómo citar

Evaluación del comportamiento de aceros de toberas aceros de toberas en biocombustible. (2022). Ingenieria Y Universidad, 26. https://doi.org/10.11144/javeriana.iued26.pnsb
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar

Resumen

Objetivo: evaluar la resistencia a la corrosión de las boquillas de inyección de acero inoxidable bajo ensayo de inmersión en biodiésel, y realizar una caracterización electroquímica bajo soluciones de HNO3. Métodos y materiales: Se realizó la caracterización química del biodiésel para analizar su estabilidad. Se realizaron pruebas de inmersión durante 4 meses, evaluando el acero inoxidable 304 bajo 3 concentraciones diferentes de mezclas de diésel/biocombustible. Además, se realizaron ensayos de polarización con concentraciones de NOx superiores a los niveles medidos en las emisiones de los motores. Resultados y discusión: El uso de biocombustibles en Colombia ha sido impulsado en gran medida por la producción de etanol de origen vegetal. Su uso aporta algunas ventajas relacionadas con la reducción de las emisiones de partículas y gases tóxicos (principalmente, grupos aromáticos, NOx y CO2). Sin embargo, puede producirse una degradación de los materiales cuando están en contacto directo con el biodiésel. Además, se ha informado de solidificación de ceras, que provoca el taponamiento de las boquillas. No obstante, se desconoce si esto influye en la difusión del oxígeno en la solución y, a su vez, afecta a la resistencia a la corrosión del acero inoxidable. Conclusiones: La resistencia a la corrosión del acero inoxidable 304 cambió bajo condiciones de inmersión, aunque su capa protectora no se vio afectada por las concentraciones de NOx registradas en las mezclas de biocombustible.

HTML Full Text (Inglés)
PDF (Inglés)
PDF
XML (Inglés)

A. Iversen, Sheir’s Corrosion, 1st ed., Elsevier Science, 2010.

S. Deshpande, A. Joshi, S. Vagge and N. Anekar, “Corrosion behavior of nodular cast iron in biodiesel blends”, Eng. Fail. Anal., vol. 105, pp. 1319-1327, 2019, https://doi.org/10.1016/j.engfailanal.2019.07.060

F. Anguebes-Franseschi et al., “Physical and Chemical Properties of Biodiesel Obtained from Amazon Sailfin Catfish (Pterygoplichthys pardalis) Biomass Oil,” Journal of Chemistry, vol. 2019, p. 7829630, ene. 2019, https://doi.org/10.1155/2019/7829630

E. C. Zuleta, L. Baena, L. A. Rios and J. A. Calderón, “The oxidative stability of biodiésel and its impact on the deterioration of metallic and polymeric materials: a review,” Journal of the Brazilian Chemical Society, vol. 23, no. 12, pp. 2159-2175, 2012, https://doi.org/10.1590/S0103-50532012001200004

J. Agudelo, E. Gutiérrez y P. Benjumea, “Análisis experimental de la combustión de un motor diésel de automoción operando con mezclas diésel-biodiésel de palma” Dyna, vol. 76, no. 159, p. 103-113, 2009.

P. Benjumea and J. Agudelo, “Basic properties of palm oil biodiesel – diesel blends,” vol. 87, no. 10-11, pp. 2069-2075, 2008, https://doi.org/10.1016/j.fuel.2007.11.004

S. Lebedevas and A. Vaicekauskas, "Research into the application of biodiesel in the transport sector of Lithuania", Transport, vol. 21, no. 2, pp. 80-87, 2006, https://doi.org/10.3846/16484142.2006.9638047

G. Knothe, “‘Designer’ Biodiesel: Optimizing Fatty Ester Composition to Improve Fuel Properties,” Energy & Fuels, vol. 22, no. 2, pp. 1358-1364, 2008. https://doi.org/10.1021/ef700639e

A. Demirbas, “Progress and recent trends in biofuels,” Progress in Energy and Combustion Science, vol. 33, no. 1, pp. 1-18, 2007, https://doi.org/10.1016/j.pecs.2006.06.001

ASTM D6751-15 International, Standard Specification for Biodiesel Fuel Blend Stock (B100) for Middle Distillate Fuels, 2020.

ASTM D445-17 International, Standard Test Method for Kinematic Viscosity of Transparent and Opaque Liquids (and Calculation of Dynamic Viscosity), 2019.

S. García-Muentes, F. Lafargue Perez, B. Labrada, M. Díaz and A. Campo-Lafita, “Propiedades fisicoquímicas del aceite y biodiesel producidos de la Jatropha curcas L. en la provincia de Manabí, Ecuador” Revista Cubana de Química, vol. 30, pp. 142-158, abr. 2018.

ASTM D664-18 International, Standard Test Method for Acid Number of Petroleum Products by Potentiometric Titrationel Blend Stock (B100) for Middle Distillate Fuels, 2018.

UNE EN 14111, Fat and oil derivatives. Fatty Acid Methyl Esters (FAME). Determination of iodine value, 2003.

ASTM A570-98 International, Standard Specification for Steel, Sheet and Strip, Carbon, Hot-Rolled (Withdrawn 2000), 1998.

ASTM E18-03, Standard Test Methods for Rockwell Hardness and Rockwell Superficial Hardness of Metallic Materials, 2003.

ASTM G31-72 International, Standard Practice for Laboratory Immersion Corrosion Testing of Metals, 2004.

G. Dwivedi and M. Sharma, “Impact of cold flow properties of biodiesel on engine performance”, Renew. Sustain. Energy Rev., vol. 31, pp. 650-656, 2014.

ASTM E3-01 International, Standard Guide for Preparation of Metallographic Specimens, 2001.

ASTM E407-07 International, Standard test methods for microetching, 2007.

G. F. Vander Voort et al., “ASM handbook”, Metallogr. Microstruct., vol. 9, pp. 44073-0002, 2004.

O. H. Venegas and L. F. Mónico, “Estudio de la influencia del uso de combustibles alternativos en un motor de combustión interna”, Escuela Colombiana de Ingeniería Julio Garavito, Bogotá D. C:, Informe de investigación, 2019.

D. Kolman, D. Ford, D. Butt and T. Nelson, “Corrosion of 304 stainless steel exposed to nitric acid-chloride environments”, Corros. Sci., vol. 39, no. 12, pp. 2067-2093, 1997. https://doi.org/10.1016/S0010-938X(97)00092-9

K. Ishimi, Y. Ida, F. Tsutaka and Y. K. Sugimoto, “Nitric Acid Passivation Treatment of Type 304 Stainless Steels with Different Surface Polishing Conditions and Changes in Pitting Inhibition Effect of The Treatment with Exposure to Corrosion Environments”, J. Surf. Finish. Soc. Jpn., vol. 66, no. 4, pp. 158-164, 2015, https://doi.org/10.4139/sfj.66.158

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.

Derechos de autor 2022 David Leonardo Blanco-Estupiñan, MSc, Angela Bermudez-Castañeda, PhD, Sebastián Marquez