A Systematic Layout Planning and TOPSIS application for the design of a Power Generation Turbine Parts Repair Workshop
HTML Full Text (Inglés)
PDF (Inglés)
XML (Inglés)

Palabras clave

Diseño de instalaciones
planeación sistemática de la distribución
TOPSIS
turbinas de generación eléctrica
caso de estudio

Cómo citar

A Systematic Layout Planning and TOPSIS application for the design of a Power Generation Turbine Parts Repair Workshop. (2022). Ingenieria Y Universidad, 26. https://doi.org/10.11144/Javeriana.iued26.slpt
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar

Resumen

Objetivo: En este documento se presenta una aplicación conjunta de los métodos de Planificación Sistemática de la Distribución (SLP) y TOPSIS para el diseño de distribución de instalaciones de un taller de reparación de piezas de turbinas de generación eléctrica. El método SLP se ha conocido como una herramienta de fácil aplicación que puede considerar tanto criterios cualitativos como cuantitativos. Materiales y Métodos: En este estudio de caso, el método SLP se adapta para un futuro proyecto de planta que no está actualmente en marcha. En primer lugar, en lugar de un análisis de flujo de materiales, se lleva a cabo la definición del flujo de proceso, así como de los requisitos de departamentos para la futura planta. Luego, las relaciones de cercanía entre las actividades del flujo de proceso y las alternativas de distribución en planta son determinadas. Finalmente, se aplica el método TOPSIS para evaluar y seleccionar la mejor alternativa de distribución en planta, de acuerdo con el cumplimiento de las relaciones de cercanía, la ubicación de los departamentos peligrosos, el flujo de operaciones y la ubicación de los departamentos alrededor de una subestación eléctrica actual. Resultados y Discusión: El diseño de la instalación resultante cumple con los criterios definidos y sus diseños arquitectónicos y de distribución en planta se presentan utilizando software 3D. Conclusión: La aplicación conjunta del SLP y TOPSIS permitió obtener un diseño de distribución en planta apropiado para el caso del taller de reparación de partes de turbinas de generación eléctrica.

HTML Full Text (Inglés)
PDF (Inglés)
XML (Inglés)

F. R. Jacobs and R. B. Chase, Operations and supply chain management, Fifteenth edition. New York, NY: McGraw-Hill Education, 2018.

M. P. Stephens and F. E. Meyers, Manufacturing facilities design and material handling, Fifth edition. West Lafayette, Indiana: Purdue University Press, 2013.

J. A. Tompkins, Ed., Facilities planning, 4th ed. Hoboken, NJ: J. Wiley, 2010.

J. F. Mora, R. Nait-Abdallah, A. J. Lozano, C. Montoya, and R. Otero-Caicedo, “Batch assignment of parallelmachines in an automotive safety glass manufacturing facility,” Ing. Univers., vol. 24, pp. 1–21, 2020, doi: https://doi.org/10.11144/Javeriana.iued24.bapm

O. Rubiano-Ovalle and A. Arroyo-Almanza, “Solving a two-sided assembly line balancing problem using memetic algorithms,” Ing. Univers., vol. 13, no. 2, pp. 267–280, 2009.

S. P. Singh and R. R. K. Sharma, “A review of different approaches to the facility layout problems,” Int J Adv Manuf Technol, vol. 30, no. 5–6, pp. 425–433, 2006, doi: https://doi.org/10.1007/s00170-005-0087-9

R. Muther and L. Hales, Systematic Layout Planning. 2015.

R. Muther, Systematic layout planning, 2d ed. [rev. and enl.]. Boston: Cahners Books, 1973.

Á. Recalde, “Estabilidad de los Sistemas de Potencia: Problemáticas en Escenarios Complejos,” Reporte Técnico, 2014. [Online]. Available: https://www.researchgate.net/publication/273450101_ESTABILIDAD_DE_LOS_SISTEMAS_DE_POTENCIA_PROBLEMATICAS_EN_ESCENARIOS_COMPLEJOS

B. Bhushan, Introduction to tribology, Second edition. Chicheste, West Sussex, United Kingdom: John Wiley & Sons, Inc., 2013.

R. Reed, Plant layout: Factors, principles and techniques. 1961.

J. M. Apple, Plant layout and material handling, Third edition. New York Chichester Brisbane Toronto Singapore: John Wiley & Sons, 1977.

G. C. Armour and E. S. Buffa, “A Heuristic Algorithm and Simulation Approach to Relative Location of Facilities,” Management Science, vol. 9, no. 2, pp. 294–309, Jan. 1963, doi: https://doi.org/10.1287/mnsc.9.2.294

Y. A. Bozer, R. D. Meller, and S. J. Erlebacher, “Improvement-type layout algorithm for single and multiple-floor facilities,” Manage Sci, vol. 40, no. 7, pp. 918–932, 1994, doi: https://doi.org/10.1287/mnsc.40.7.918

T. Yang, C. Su, and Y. Hsu, “Systematic layout planning: a study on semiconductor wafer fabrication facilities,” Int Jrnl of Op & Prod Mnagemnt, vol. 20, no. 11, pp. 1359–1371, Nov. 2000, doi: https://doi.org/10.1108/01443570010348299

M. Ye and G. Zhou, “A local genetic approach to multiobjective, facility layout problems with fixed aisles,” International Journal of Production Research, vol. 45, no. 22, pp. 5243–5264, Nov. 2007, doi: https://doi.org/10.1080/00207540600818179

S. A. Ali Naqvi, M. Fahad, M. Atir, M. Zubair, and M. M. Shehzad, “Productivity improvement of a manufacturing facility using systematic layout planning,” Cogent Engineering, vol. 3, no. 1, Jul. 2016, doi: https://doi.org/10.1080/23311916.2016.1207296

Y.-S. Liu, L.-N. Tang, Y.-Z. Ma, and T. Yang, “TFT-LCD module cell layout design using simulation and fuzzy multiple attribute group decision-making approach,” Applied Soft Computing, vol. 68, pp. 873–888, Jul. 2018, doi: https://doi.org/10.1016/j.asoc.2017.10.026

B. Suhardi, E. Juwita, and R. D. Astuti, “Facility layout improvement in sewing department with Systematic Layout planning and ergonomics approach,” Cogent Engineering, vol. 6, no. 1, Mar. 2019, doi: https://doi.org/10.1080/23311916.2019.1597412

E. Ramírez Drada, V. L. Chud Pantoja, and J. P. Orejuela Cabrera, “Propuesta metodológica multicriterio para la distribución semicontinua de plantas,” SUMNEG, vol. 10, no. 23, pp. 132–145, Dec. 2019, doi: https://doi.org/10.14349/sumneg/2019.V10.N23.A6

Buchari, U. Tarigan, and M. B. Ambarita, “Production layout improvement by using line balancing and Systematic Layout Planning (SLP) at PT. XYZ,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 309, p. 012116, Feb. 2018, doi: https://doi.org/10.1088/1757-899X/309/1/012116

A. P. Singh and M. Yilma, “Production floor layout using systematic layout planning in Can manufacturing company,” in 2013 International Conference on Control, Decision and Information Technologies (CoDIT), Hammamet, Tunisia, May 2013, pp. 822–828. doi: https://doi.org/10.1109/CoDIT.2013.6689649

Z. Liao, M. Cong, D. Liu, and F. Meng, “Using simulation in layout verification of solar module assembly workshop,” Int. J. Model. Simul. Sci. Comput., vol. 09, no. 02, p. 1850017, Apr. 2018, doi: https://doi.org/10.1142/S1793962318500174

L. O. Alpala, M. D. M. eva Alemany, Di. H. Peluffo, F. A. Bolaños, A. M. Rosero, and J. C. Torres, “Methodology for the design and simulation of industrial facilities and production systems based on a modular approach in an ‘industry 4.0’ context,” DYNA, vol. 85, no. 207, pp. 243–252, Oct. 2018, doi: https://doi.org/10.15446/dyna.v85n207.68545

D. P. Van Donk and G. Gaalman, “Food Safety and Hygiene - Systematic layout planning of food processes,” Chemical Engineering Research and Design, vol. 82, no. 11, pp. 1485–1493, Nov. 2004, doi: https://doi.org/10.1205/cerd.82.11.1485.52037

J. Gómez, A. Tascón, and F. Ayuga, “Systematic layout planning of wineries: the case of Rioja region (Spain),” J Agricult Engineer, vol. 49, no. 1, p. 34, Apr. 2018, doi: https://doi.org/10.4081/jae.2018.778

P. L. Le, T.-M. Dao, and A. Chaabane, “BIM-based framework for temporary facility layout planning in construction site: A hybrid approach,” CI, vol. 19, no. 3, pp. 424–464, Jul. 2019, doi: https://doi.org/10.1108/CI-06-2018-0052

Q.-L. Lin, H.-C. Liu, D.-J. Wang, and L. Liu, “Integrating systematic layout planning with fuzzy constraint theory to design and optimize the facility layout for operating theatre in hospitals,” J Intell Manuf, vol. 26, no. 1, pp. 87–95, Feb. 2015, doi: https://doi.org/10.1007/s10845-013-0764-8

Q. Lin and D. Wang, “Facility Layout Planning with SHELL and Fuzzy AHP Method Based on Human Reliability for Operating Theatre,” Journal of Health care Engineering, vol. 2019, pp. 1–12, Jan. 2019, doi: https://doi.org/10.1155/2019/8563528

D. Wang, J. Wu, and Q. Lin, “A novel method for designing and optimizing the layout of facilities in bathroom for the elderly in home-based rehabilitation,” Disability and Rehabilitation: Assistive Technology, vol. 13, no. 4, pp. 333–341, May 2018, doi: https://doi.org/10.1080/17483107.2017.1319426

P. Palominos, D. Pertuzé, L. Quezada, and L. Sanchez, “An Extension of the Systematic Layout Planning System Using QFD: Its Application to Service Oriented Physical Distribution,” Engineering Management Journal, vol. 31, no. 4, pp. 284–302, Oct. 2019, doi: https://doi.org/10.1080/10429247.2019.1651444

F. S. Fogliatto, G. L. Tortorella, M. J. Anzanello, and L. M. Tonetto, “Lean-Oriented Layout Design of a Health Care Facility:,” Quality Management in Health Care, vol. 28, no. 1, pp. 25–32, 2019, doi: https://doi.org/10.1097/QMH.0000000000000193

S. Su, Y. Zheng, J. Xu, and T. Wang, “Cabin Placement Layout Optimization Based on Systematic Layout Planning and Genetic Algorithm,” Polish Maritime Research, vol. 27, no. 1, pp. 162–172, Mar. 2020, doi: https://doi.org/10.2478/pomr-2020-0017

T. S. Hale, F. Huq, and I. Hipkin, “An improved facility layout construction method,” Int J Prod Res, vol. 50, no. 15, pp. 4271–4278, 2012, doi: https://doi.org/10.1080/00207543.2011.611541

D. Suhardini, W. Septiani, and S. Fauziah, “Design and Simulation Plant Layout Using Systematic Layout Planning,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 277, p. 012051, Dec. 2017, doi: https://doi.org/10.1088/1757-899X/277/1/012051

Z. Yujie and W. Fang, “Study on the General Plane of Log Yards Based on Systematic Layout Planning,” in 2009 International Conference on Information Management, Innovation Management and Industrial Engineering, Xian, China, 2009, pp. 92–95. doi: https://doi.org/10.1109/ICIII.2009.332

A. Shahin and M. Poormostafa, “Facility Layout Simulation and Optimization: an Integration of Advanced Quality and Decision Making tools and Techniques,” MAS, vol. 5, no. 4, p. p95, Aug. 2011, doi: https://doi.org/10.5539/mas.v5n4p95

B. Chakraborty and S. Das, “Development of Plant Layout for Improving Organizational Effectiveness by Hybridizing GT, TOPSIS and SLP,” in Advanced Engineering Optimization Through Intelligent Techniques, vol. 949, R. Venkata Rao and J. Taler, Eds. Singapore: Springer Singapore, 2020, pp. 515–525. doi: https://doi.org/10.1007/978-981-13-8196-6_45

C.-L. Hwang and K. Yoon, Multiple Attribute Decision Making. Methods and Applications A State-of-the-Art Survey, vol. 186. Berlin, Heidelberg: Springer Berlin Heidelberg, 1981. doi: https://doi.org/10.1007/978-3-642-48318-9

M. Behzadian, S. Khanmohammadi Otaghsara, M. Yazdani, and J. Ignatius, “A state-of the-art survey of TOPSIS applications,” Expert Systems with Applications, vol. 39, no. 17, pp. 13051–13069, Dec. 2012, doi: https://doi.org/10.1016/j.eswa.2012.05.056

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.

Derechos de autor 2023 Sebastián Cáceres-Gelvez, MSc, Martín Darío Arango-Serna, PhD, Laura Gutiérrez-Sepúlveda, BSc, Natalia Jaramillo-Agudelo, BSc, Juliana Mejía-Pérez, BSc, Paulina Marín-Quintero, BsC