Resumen
El tomate es uno de los cultivos más susceptibles de ser atacados por plagas, por lo que el uso de plaguicidas durante su cosecha ha aumentado en los últimos años. Este uso ha suscitado preocupaciones sobre la presencia de contaminantes químicos en los alimentos, que pueden tener efectos nocivos para la salud. Para identificar y determinar la presencia de plaguicidas de manera eficiente y confiable en cualquiera de las etapas: lavado, pelado y esterilización, se crea una metodología rápida, fácil, barata, efectiva, robusta y segura (QuEChERS). Hoy se implementa con éxito para el seguimiento de estos residuos en tomate con porcentajes de recuperación y desviaciones estándar relativas según estándares internacionales. Esta revisión analiza la aplicación de la metodología QuEChERS para la identificación y determinación de plaguicidas en tomate, a través de una revisión de la literatura de los últimos años. Además, se realiza un análisis bibliométrico de la base de datos Scopus entre 2007-2021, encontrando que las áreas más publicadas son Química y Agricultura, siendo China el país con más publicaciones. Se concluyó que en la mayoría de las investigaciones se realizan modificaciones en la metodología, como el uso de lodos de diciandiamina, obteniendo buenos resultados en los porcentajes de extracción y recuperación con la ventaja de tener un menor costo y contaminación ambiental.
A. Lawal, R. C. S. Wong, G. H. Tan, L. B. Abdulra'Uf, and A. M. A. Alsharif, "Recent modifications and validation of QuEChERS-dSPE coupled to LC-MS and GC-MS instruments for determination of pesticide/agrochemical residues in fruits and vegetables: Review," Journal of Chromatographic Science, vol. 56, no. 7, pp. 656-669, 2018.
W. H. Leong et al., "Application, monitoring and adverse effects in pesticide use: The importance of reinforcement of Good Agricultural Practices (GAPs)," Journal of Environmental Management, vol. 260, no. July 2019, pp. 109987-109987, 2020.
M. Certel, M. F. Cengiz, and M. Akçay, "Kinetic and thermodynamic investigation of mancozeb degradation in tomato homogenate during thermal processing," Journal of the Science of Food and Agriculture, vol. 92, no. 3, pp. 534-541, 2012.
E. Reiler, E. Jørs, J. Bælum, O. Huici, M. M. Alvarez Caero, and N. Cedergreen, "The influence of tomato processing on residues of organochlorine and organophosphate insecticides and their associated dietary risk," Science of the Total Environment, vol. 527-528, pp. 262-269, 2015.
M. Jankowska, P. Kaczynski, I. Hrynko, and B. Lozowicka, "Dissipation of six fungicides in greenhouse-grown tomatoes with processing and health risk," Environmental Science and Pollution Research, vol. 23, no. 12, pp. 11885-11900, 2016.
J. Stocka, M. Biziuk, and J. Namies̈nik, "Analysis of pesticide residue in fruits and vegetables using analytical protocol based on application of the QuEChERS technique and GC-ECD system," International Journal of Global Environmental Issues, vol. 15, no. 1-2, pp. 136-150, 2016.
X. Liang et al., "Simultaneous determination of pyrimethanil, cyprodinil, mepanipyrim and its metabolite in fresh and home-processed fruit and vegetables by a QuEChERS method coupled with UPLC-MS/MS," Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, vol. 30, no. 4, pp. 713-721, 2013.
R.-M. Hlihor, M. O. Pogăcean, M. Rosca, P. Cozma, and M. Gavrilescu, "Modelling the behavior of pesticide residues in tomatoes and their associated long-term exposure risks," Journal of Environmental Management, vol. 233, pp. 523-529, 2019.
N. Yigit and Y. S. Velioglu, "Effects of processing and storage on pesticide residues in foods," Critical Reviews in Food Science and Nutrition, vol. 0, no. 0, pp. 1-20, 2019.
A. M. Murcia O and E. Stashenko, "Determinación de plaguicidas Organofosforados en vegetales producidos en Colombia," Agro Sur, vol. 36, no. 2, pp. 71-81, 2008.
F. J. Camino-Sánchez et al., "UNE-EN ISO/IEC 17025:2005-accredited method for the determination of pesticide residues in fruit and vegetable samples by LC-MS/MS," Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, vol. 27, no. 11, pp. 1532-1544, 2010.
EFSA, "European Union report on pesticide residues in food," European Food Safety Authority. EFSA Journal, vol. 11, no. 1, 2013.
Y. F. Li, L. Q. Qiao, F. W. Li, Y. Ding, Z. J. Yang, and M. L. Wang, "Determination of multiple pesticides in fruits and vegetables using a modified quick, easy, cheap, effective, rugged and safe method with magnetic nanoparticles and gas chromatography tandem mass spectrometry," Journal of Chromatography A, vol. 1361, pp. 77-87, 2014.
J. Lee, H. Kim, S. Kang, N. Baik, I. Hwang, and D. S. Chung, "Applications of deep eutectic solvents to quantitative analyses of pharmaceuticals and pesticides in various matrices: a brief review," Archives of Pharmacal Research, pp. 1-20, 2020.
M. Nemati, M. A. Farajzadeh, A. Mohebbi, F. Khodadadeian, and M. R. Afshar Mogaddam, "Development of a stir bar sorptive extraction method coupled to solidification of floating droplets dispersive liquid–liquid microextraction based on deep eutectic solvents for the extraction of acidic pesticides from tomato samples," Journal of separation science, vol. 43, no. 6, pp. 1119-1127, 2020.
M. Anastassiades, S. J. Lehotay, D. Štajnbaher, and F. J. Schenck, "Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “Dispersive Solid-Phase Extraction” for the Determination of Pesticide Residues in Produce," Journal of AOAC International, vol. 86, no. 2, pp. 412-431, 2003.
L. Kim, D. Lee, H. K. Cho, and S. D. Choi, Review of the QuEChERS method for the analysis of organic pollutants: Persistent organic pollutants, polycyclic aromatic hydrocarbons, and pharmaceuticals. Elsevier 2019, pp. e00063-e00063.
M. González-Curbelo, B. Socas-Rodríguez, A. V. Herrera-Herrera, J. González-Sálamo, J. Hernández-Borges, and M. Rodríguez-Delgado, Evolution and applications of the QuEChERS method. Elsevier 2015, pp. 169-185.
Á. Santana-Mayor, B. Socas-Rodríguez, A. V. Herrera-Herrera, and M. Á. Rodríguez-Delgado, Current trends in QuEChERS method. A versatile procedure for food, environmental and biological analysis. Elsevier, 2019, pp. 214-235.
S. J. Lehotay, "QuEChERS Sample Preparation Approach for Mass Spectrometric Analysis of Pesticide Residues in Foods," Mass Spectrometry in Food Safety, vol. 747, no. 2, pp. 259-266, 2011.
VOSviewer, " Centre for Science and Technology Studies. Leiden University, The Netherlands," vol. 1.6.16, ed, 2018.
Y.-L. Xie, Z.-D. Zhao, X.-L. Zhang, L.-l. Tang, Y. Zhang, and C.-H. Zhang, "Simultaneous analysis of herbicide metribuzin and its transformation products in tomato using QuEChERS-based gas chromatography coupled to a triple quadrupole mass analyzer," Microchemical Journal, vol. 133, pp. 468-473, 2017.
S. Kontou, D. Tsipi, and C. Tzia*, "Stability of the dithiocarbamate pesticide maneb in tomato homogenates during cold storage and thermal processing," Food additives and contaminants, vol. 21, no. 11, pp. 1083-1089, 2004.
M. Dorais, D. L. Ehret, and A. P. Papadopoulos, "Tomato (Solanum lycopersicum) health components: from the seed to the consumer," Phytochemistry Reviews, vol. 7, no. 2, p. 231, 2008.
S. J. Lehotay, "Determination of pesticide residues in foods by acetonitrile extraction and partitioning with magnesium sulfate: collaborative study," Journal of AOAC International, vol. 90, no. 2, pp. 485-520, 2007.
M. Anastassiades, E. Scherbaum, B. Tasdelen, and D. Stajnbaher, "Recent developments in QuEChERS methodology for pesticide multiresidue analysis," Pesticide chemistry: Crop protection, public health, environmental safety, W. O. Library, Ed., EE.UU, 2007, pp. 439-458. [Online]. Available.
D. A. Ahumada and A. M. Zamudio, "Análisis de residuos de plaguicidas en tomate mediante el uso de QuEChERS y cromatografía líquida ultrarrápida acoplada a espectrometría de masas," Revista Colombiana de Quimica, vol. 40, no. 2, pp. 227-246, 2011.
C. R. Bojacá, L. A. Arias, D. A. Ahumada, H. A. Casilimas, and E. Schrevens, "Evaluation of pesticide residues in open field and greenhouse tomatoes from Colombia," Food Control, vol. 30, no. 2, pp. 400-403, 2013.
L. A. Arias, C. R. Bojacá, D. A. Ahumada, and E. Schrevens, "Monitoring of pesticide residues in tomato marketed in bogota, colombia," Food Control, vol. 35, no. 1, pp. 213-217, 2014.
N. Liu et al., "Effect of household canning on the distribution and reduction of thiophanate-methyl and its metabolite carbendazim residues in tomato," Food Control, vol. 43, pp. 115-120, 2014.
O. Golge and B. Kabak, "Evaluation of QuEChERS sample preparation and liquid chromatography-triple-quadrupole mass spectrometry method for the determination of 109 pesticide residues in tomatoes," (in English), Food Chemistry, Article vol. 176, pp. 319-332, 2015.
G. C. R. M. Andrade, S. H. Monteiro, J. G.Francisco, L. A.Figueiredo, A. A.Rocha, and V. L.Tornisielo, "Effects of types of washing and peeling in relation to pesticide residues in tomatoes," Journal of the Brazilian Chemical Society, vol. 26, no. 10, pp. 1994-2002, 2015.
X. Chen, F. Dong, J. Xu, X. Liu, X. Wu, and Y. Zheng, "Effective monitoring of fluxapyroxad and its three biologically active metabolites in vegetables, fruits, and cereals by optimized QuEChERS treatment based on UPLC-MS/MS," Journal of agricultural and food chemistry, vol. 64, no. 46, pp. 8935-8943, 2016.
A. García Ríos, C. C. Rodríguez Vida, E. Restrepo Montes, and A. Sánchez López, "Residuos de plaguicidas en tomate (Solanum lycopersicum) comercializado en Amenia, Colombia," Revista Vitae, vol. 2, no. 2, pp. 68-79, 2017.
M. A. Rasolonjatovo et al., "Reduction of methomyl and acetamiprid residues from tomatoes after various household washing solutions," International Journal of Food Properties, vol. 20, no. 11, pp. 2748-2759, 2017.
Q. Yang, N. Liu, S. Zhang, W. Wang, Y. Zou, and Z. Gu, The dissipation of cyazofamid and its main metabolite CCIM during tomato growth and tomato paste making process. Taylor and Francis Ltd, 2019, pp. 1327-1336.
X. Ye, H. Shao, T. Zhou, J. Xu, X. Cao, and W. Mo, "Analysis of Organochlorine Pesticides in Tomatoes Using a Modified QuEChERS Method Based on N-Doped Graphitized Carbon Coupled with GC-MS/MS," Food Analytical Methods, vol. 13, no. 3, pp. 823-832, 2020.
H.-B. Zheng et al., "Quick, easy, cheap, effective, rugged and safe method with magnetic graphitized carbon black and primary secondary amine as adsorbent and its application in pesticide residue analysis," Journal of Chromatography A, vol. 1300, pp. 127-133, 2013.
Y. Yang, "Study on the preparation process of active calcium oxide slag derived from dicyandiamide. Dissertation, Ningxia University," ed. China, 2016.
J. Cheng et al., "Drastic promoting the visible photoreactivity of layered carbon nitride by polymerization of dicyandiamide at high pressure," Applied Catalysis B: Environmental, vol. 232, pp. 330-339, 2018.
L. Yang et al., "Enhanced photocatalytic activity of g-C3N4 2D nanosheets through thermal exfoliation using dicyandiamide as precursor," Ceramics International, vol. 44, no. 17, pp. 20613-20619, 2018.

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Derechos de autor 2024 Sofía Consepción Tuárez-Benitez, Alex Dueñas-Rivadeneira, Enrique Ruiz-Reyes, Joan Manuel Rodríguez Díaz