Published Jun 17, 2021



PLUMX
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar


Maria Alejandra Pimiento, MSc https://orcid.org/0000-0002-7691-7291

Jaime Andrés Lara-Borrero, PhD https://orcid.org/0000-0003-3247-7519

Andrés Torres, PhD https://orcid.org/0000-0001-8693-8611

##plugins.themes.bootstrap3.article.details##

Abstract

Objective: The goal of this work was to establish the quality conditions of the sediments retained in a constructed-wetland/storage-tank, which are to be used as productive material. Materials and methods: Sediments were collected every fortnight for five months in 2016, with sediment traps specially designed for the study case, to analyze particle size distribution, total organic carbon, and heavy metals concentrations. Sediment and hydrological data processing were performed using principal component analysis and multiple correspondence analysis. Results: The maximum measured concentrations were 110.80 mg/kg, 263.25 mg/kg, 798.85 mg/kg, and 3067 mg/kg for Cr, Cu, Pb, and Zn respectively; for total organic carbon was 20.6 mg. The sediment particles were considered thin (D50 < 150μm). Interesting relationships between rainfall and sediment characteristics were found. In shorter dry seasons, higher particle diameter, lower concentrations of heavy metals, and higher concentrations of total organic carbon were seen. Conclusions: Sediments are suitable for use in activities such as land remediation, vegetation of soils that are not for agricultural use, and as materials for ornamental and recreational areas. It is possible to use the sediments in embankments as tolerable soil for fillings of concrete structures and culverts in the core or foundation area.

Keywords

material productivo, características hidrológicas, características de sedimentos, sistema de aprovechamiento de agua lluviaProductive material, rainfall characteristics, sediments characteristics, stormwater harvesting systems

References
[1] SedNet, L. Palumbo, and G. Bortone, Sediment and Dredged Material Treatment. Amsterdam: Elsevier Science, 2007.
[2] Y. X. Chen, G. W. Zhu, G. M. Tian, G. D. Zhou, Y. M. Luo, and S. C. Wu, “Phytotoxicity of dredged sediment from urban canal as land application,” Environ. Pollut., vol. 117, no. 2, pp. 233–241, Apr. 2002. Available: https://doi.org/10.1016/S0269-7491(01)00270-6
[3] Y.-C. Jang, P. Jain, T. Tolaymat, B. Dubey, S. Singh, and T. Townsend, “Characterization of roadway stormwater system residuals for reuse and disposal options,” Sci. Total Environ., vol. 408, no. 8, pp. 1878–1887, Mar. 2010. Available: https://doi.org/10.1016/j.scitotenv.2010.01.036
[4] K. Walter, G. Gunkel, and N. Gamboa, “An assessment of sediment reuse for sediment management of Gallito Ciego Reservoir, Peru,” Lakes Reserv. Sci. Policy Manag. Sustain. Use, vol. 17, no. 4, pp. 301–314, 2012. Available: https://doi.org/10.1111/lre.12008
[5] A. Akcil, C. Erust, S. Ozdemiroglu, V. Fonti, and F. Beolchini, “A review of approaches and techniques used in aquatic contaminated sediments: metal removal and stabilization by chemical and biotechnological processes,” J. Clean. Prod., vol. 86, no. Supplement C, pp. 24–36, Jan. 2015. Available: http://dx.doi.org/10.1016/j.jclepro.2014.08.009
[6] R. Ashley, J.-L. Bertrand-Krajewski, T. Hvitved-Jacobsen, and M. Verbanck, “4.1 Solids control at sources and at inputs to sewerage systems,” in Solids in Sewers. London: IWA Publishing, 2004, pp. 210–251. Available: https://doi.org/10.2166/9781780402727
[7] Y.-L. Cheng, H.-M. Wee, P.-S. Chen, Y.-Y. Kuo, and G.-J. Chen, “Innovative reservoir sediments reuse and design for sustainability of the hydroelectric power plants,” Renew. Sustain. Energy Rev., vol. 36, pp. 212–219, Aug. 2014. Available: https://ideas.repec.org/a/eee/rensus/v36y2014icp212-219.html
[8] L. Wang, J. S. H. Kwok, D. C. W. Tsang, and C.-S. Poon, “Mixture design and treatment methods for recycling contaminated sediment,” J. Hazard. Mater., vol. 283, no. Supplement C, pp. 623–632, Feb. 2015. Available: https://doi.org/10.1016/j.jhazmat.2014.09.056
[9] R. Fonseca, F. Barriga, and W. S. Fyfe, “Reversing desertification by using dam reservoir sediments as agriculture soils,” Episodes, vol. 21, pp. 218–224, 1998.
[10] J. Vaze and F. H. S. Chiew, “Nutrient loads associated with different sediment sizes in urban stormwater and surface pollutants,” J. Environ. Eng., vol. 130, no. 4, pp. 391–396, Apr. 2004. Available: https://doi.org/10.1061/(ASCE)0733-9372(2004)130:4(391)
[11] F. J. Charters, T. A. Cochrane, and A. D. O’Sullivan, “Particle size distribution variance in untreated urban runoff and its implication on treatment selection,” Water Res., vol. 85, no. Supplement C, pp. 337–345, Nov. 2015. Available: https://pubmed.ncbi.nlm.nih.gov/26343992/
[12] M. A. Pimiento, D. S. Rivera, J. A. Lara-Borrero, and A. Torres, “Relación entre las características hidrológicas, físicas y químicas de sedimentos presentes en escorrentía de aguas lluvias,” Ing. Compet., vol. 20, no. 2, pp. 27–36, 2018. Available: https://doi.org/10.25100/iyc.v20i2.5846
[13] K. M. Camponelli, S. M. Lev, J. W. Snodgrass, E. R. Landa, and R. E. Casey, “Chemical fractionation of Cu and Zn in stormwater, roadway dust and stormwater pond sediments,” Environ. Pollut., vol. 158, no. 6, pp. 2143–2149, Jun. 2010. Available: https://doi.org/10.1016/j.envpol.2010.02.024
[14] C. J. Cedeño Ochoa, “Metales en agua por Plasma Acoplado por Inducción (Cd, Cr, Cu, Ni, Pb, Zn),” Ideam, Subdirección de Hidrología-Grupo Laboratorio de Calidad Ambiental, Oct. 30, 2006. Available: http://www.ideam.gov.co/documents/14691/38155/Metales+en+agua+por+Plasma+Acoplado+por+Inducci%C3%B3n..pdf/d4946215-8e8f-4262-bab2-b236139cfcc8
[15] Canadian Council of Monisters of the Environment, Canadian Sediment Quality Guidelines for the Protection of Aquatic Life, 2001. https://www.elaw.org/system/files/sediment_summary_table.pdf
[16] Wisconsin Dept. of Natural REsources, Consensus-Based Sediment Quality Guidelines Recommendations for Use & Application, 2003. Available: https://dnr.wi.gov/files/PDF/pubs/rr/RR088.pdf
[17] Ministerie van Volkshuisvesting, “Dutch Target and Intervention Values,” Feb. 04, 2000. https://www.esdat.net/environmental%20standards/dutch/annexs_i2000dutch%20environmental%20standards.pdf
[18] Norwegian Environment Agency, Risk assessment of contaminated sediments, vol. M-1132, 2018. https://www.miljodirektoratet.no/globalassets/publikasjoner/m1132/m1132.pdf
[19] Australian and New Zealand Environment and Conservation Council, Australian and New Zealand Guidelines for Fresh and Marine Water Quality. ANZECC, 2000. https://www.waterquality.gov.au/sites/default/files/documents/anzecc-armcanz-2000-guidelines-vol1.pdf
[20] Ove Arup & Partners Hong Kong Ltd., “EIA Report,” 2009. https://www.epd.gov.hk/eia/register/english/permit/vep2822008/documents/emar200909/pdf/emar200909.pdf
[21] Ministerio de Vivienda, Ciudad y Territorio, Reglamento Técnico del Sector de Agua Potable y Saneamiento Básico-RAS: Título F Sistemas de Aseo Urbano. Bogotá: Ministerio de Vivienda, Ciudad y Territorio, 2012. Available: http://www.minvivienda.gov.co/Documents/ViceministerioAgua/TITULO%20F.pdf
[22] R. Canet, C. Chaves, F. Pomares, and R. Albiach, “Agricultural use of sediments from the Albufera Lake (eastern Spain),” Agric. Ecosyst. Environ., vol. 95, no. 1, pp. 29–36, Apr. 2003. Available: https://doi.org/10.1016/S0167-8809(02)00171-8
[23] S. Galarza-Molina, A. Torres, J. Lara-Borrero, S. Méndez-Fajardo, L. Solarte, and L. González, “Towards a constructed wetland/reservoir-tank system for rainwater harvesting in an experimental catchment in Colombia,” Ing. Univ., 2015. Available: https://doi.org/10.11144/Javeriana.iyu19-2.tcws
[24] E. Juárez Badillo and A. Rico Rodríguez, Mecánica de suelos. México: Limusa 2012.
[25] United States Environmental Protection Agency, SW-846 Test Method 3051A: Microwave Assisted Acid Digestion of Sediments, Sludges, Soils, and Oils, 2016. Available: https://www.epa.gov/hw-sw846/sw-846-test-method-3051a-microwave-assisted-acid-digestion-sediments-sludges-soils-and-oils
[26] Environment Protection Authority Tasmania, Tasmanian Biosolids Reuse Guidelines. 1999.
[27] Danish Environmental Protection Agency, “Soil”, in Environmental Factors and Health, 2001. Available: https://www2.mst.dk/udgiv/publications/2001/87-7944-519-5/html/helepubl_eng.htm#6%20Soil
[28] M. B. Pescod and N. Rome, Food and Agriculture Organization of the United. Rome: FAO, 1992.
[29] United States Environmental Protection Agency, Biosolids Technology Fact Sheet Land Application of Biosolids. Washington, D. C.: EPA, Sept. 2000. Available: https://www3.epa.gov/npdes/pubs/land_application.pdf
[30] H. Snyman and J. Herselman, “Selection of management options,” in Guidelines for the Utilisation and Disposal of Wastewater Sludge, 2nd ed., vol. 1. Republic of South Africa, 2006, 1–76.
[31] Laboratorio Nacional de Materiales y Modelos Estructurales, Manual centroamericano de especificaciones para la construcción de carreteras y puentes regionales. Costa Rica: Lanamme, Mar. 2001.
[32] Instituto Nacional de Vías, “Artículo 610-13, Rellenos para estructuras,” 2012. Available: http://gerconcesion.co/invias2013/610%20RELLENOS%20PARA%20ESTRUCTURAS.pdf
[33] A. Pérez, J. Cárdenas, C. A. Peña-Guzmán, and A. Torres, “Sediments settled in stormwater sewer systems: assessment of possible uses through quality analysis,” presented at NOVATECH 2016, Lyon, Francia, 2016.
[34] C. Gunawardana, P. Egodawatta, and A. Goonetilleke, “Role of particle size and composition in metal adsorption by solids deposited on urban road surfaces,” Environ. Pollut., vol. 184, pp. 44–53, Jan. 2014. https://doi.org/10.1016/j.envpol.2013.08.010
[35] M. del P. R. Barreiro, R. D. P. Castañeda, and C. A. Zafra Mejía, “Evaluación temporal de la concentración de metales pesados asociada con el sedimento vial: Fontibón-Barrios Unidos (Bogotá D. C., Colombia),” Ing. Univ. Eng. Dev., vol. 19, no. 2, pp. 69–87, Jul. 2015. https://doi.org/10.11144/Javeriana.iyu19-2.etcm
[36] R. J. Winston and W. F. Hunt, “Characterizing runoff from roads: Particle size distributions, nutrients, and gross solids,” J. Environ. Eng., vol. 143, no. 1, pp. 1–12, Jan. 2017. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001148
[37] J. M. Trujillo-González, “Evaluación de tres zonas de la ciudad de Villavicencio a partir de las concentraciones de metales pesados presentes en el polvo vial,” M. S. thesis, Fac. Cienc. Nat. Ing., Univ. Jorge Tadeo Lozano, Bogotá, Colombia, 2014. Available: https://expeditiorepositorio.utadeo.edu.co/bitstream/handle/20.500.12010/1762/T056.pdf?sequence=1&isAllowed=y
How to Cite
Pimiento, M. A., Lara Borrero, J. A., & Torres, A. (2021). Potential Uses of Stormwater Runoff Sedimentgs Retained in a Constructed-Wetland/Storage-Tank. Ingenieria Y Universidad, 25. https://doi.org/10.11144/Javeriana.iued25.pusr
Section
Special Section: Wetland Systems