Publicado feb 27, 2021



PLUMX
Google Scholar
 
Search GoogleScholar


Fanny Guzmán Quimbayo

##plugins.themes.bootstrap3.article.details##

Resumen

La síntesis de péptidos ha surgido como una herramienta poderosa en los laboratorios bioquímicos, farmacológicos, inmunológicos, biofísicos y neurológicos, para permitir el conocimiento de múltiples mecanismos funcionales en el ámbito celular, en el ámbito de la respuesta inmune frente a diversas enfermedades y en la implementación de nuevas sustancias inmunoprofilácticas. En las últimas tres décadas, el empleo de los péptidos sintéticos se ha incrementado no sólo por el óptimo desarrollo de la síntesis química de los mismos, sino por sus implicaciones en la generación de una respuesta inmune protectora frente a diferentes enfermedades. Actualmente, se cuenta con diversas metodologías para la síntesis y producción a gran escala de un buen número de péptidos de una manera rápida y con altos rendimientos. En esta revisión se busca evidenciar la importancia de los péptidos y su aplicación en diversos campos de la ciencia.

Keywords

péptidos, vacunas sintéticas, péptidos miméticos, pseudopéptidos, péptidos antimicrobianospeptides, synthetic vaccines, mimetic peptides, pseudopeptides, antimicrobial peptides

References
1. Hruby VJ. Synthesis and use of large peptide libraries. Collection Symposium Series 1999; 1:34-46
2. Pennington MW, Dunn B. Peptide synthesis protocols. Humana Press 1994; 1-16
3. Hodges R, Smith J. Peptides: Chemistry, structure and biology. Proc 13th Am Peptide Symposium 1993; 21-30
4. Merrifield B. Solid phase peptide synthesis: new chemistry and new directions. Collection Symposium Series 1999; 1: 12-33
5. Houghten RA. General method for the rapid solid phase synthesis of large numbers of peptides: Specificity of antigen antibody interaction at the level of individual aminoacids. Proc Natl Acad
Sci USA 1985; 82: 5131-5
6. Kent SBH. Peptides: Structure and function. In: Hruby VJ, Kopple KD (editors) Proceedings 9th American Peptide Symposium. Rockford, IL, USA: Pierce Chem, 1985; 407-14
7. Merrifield RB. Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J Am Chem Soc 1963; 85: 2149-54
8. Carpino LA, Han GY. The 9- fluorenylmethoxycarbonylfunction a new basesensitive amino-protecting group. J Am Chem
Soc 1970; 92: 5748-9
9. Stewart JM, Klis WA. Innovations and perspectives in solid phase synthesis. Epton edit.,1989
10. Zasloff M. Magainins, a class of antimicrobial peptides from Xenopus skin: Isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci 1987; 84: 5449-53
11. Miyakawa Y, Ratnakar P, Gururaj A, Costello M, Costello OM etal. In vitro activity of antimicrobial peptides human and rabbit defensins and porcine leukocytes protegrin against Mycobacterium tuberculosis. Infect Immun 1996; 64(3): 926-32
12. Gennaro R, Skeerlavaj B, Romeo D. Purification, composition, and activity of two bactenecins, antibacterial peptides of bovine neutrophils. InfectImmun 1989; 57(16): 3142-6
13. Urquiza M, Suárez JE, Cárdenas C, López R, Puentes A et al. Related articles Plasmodium falciparum AMA-1 erythrocyte binding peptides implicate AMA-1 as erythrocyte binding protein. Vaccine 2000; 19(4-5): 508-13
14. Suárez JE, Urquiza M, Curtidor H, Guzmán LE, Ocampo M, Torres E et al. Related articles A GBP 130 derived peptide from Plasmodium falciparum binds to human erythrocytes and inhibits merozoite invasion in vitro. Mem Inst Oswaldo Cruz 2000; 95(4): 495-501
15. Rodríguez LE, Urquiza M, Ocampo M, Suárez J, Curtidor H, Guzmán F et al. Related articles Plasmodium falciparum EBA-175 kDa protein peptides which bind to human red blood cells. Parasitol 2000; 120: 225-35
16. Ocampo M, Urquiza M, Guzmán F, Rodríguez LE, Suárez J, Curtidor H et al. Related articles two MSA 2 peptides that bind to human red blood cells are relevant to Plasmodium falciparum merozoite invasion. J Pept Res 2000; 55(3): 216-23
17. Vera Bravo R, Marin V, García J, Urquiza M, Torres E, Trujillo M et al. Related articles amino terminal peptides of the ring infected erythrocyte surface antigen of Plasmodium falciparum bind specifically to erythrocytes. Vaccine 2000; 8(14):289-93
18. Calvo M, Guzmán F, Pérez E, Segura CH, Molano A, Patarroyo ME. Specific interactions of synthetic peptides derived from P. falciparum merozoite proteins with human red blood cells. Peptide Res 1991; 1(6): 324-32
19. Geerligs HJ, Weiger WJ, Welling GW, Welling WS. The influence of different adjuvants on the immune response to a synthetic peptide comprising aminoacid residues 9-21 of Herpes Simplex Virus type 1 lycoprotein D. J Immunol Methods 1989; 124: 95-102
20. Patarroyo ME, Romero P, Torres ML, Clavijo P, Moreno A, Martínez A et al. Induction of protective immunity against experimental infection with malaria using synthetic peptides. Nature 1987; 328(6131): 629-32
21. Amador R, Guzmán F, Patarroyo ME. Safety and immunogenicity of the synthetic malaria vaccine Spf66 in large field trial. J Infect Dis 1992; 166:134-44
22. Amador R, Moreno A, Valero MV, Murillo L, Mora A, Rojas M et al. The first field trials of the chemically synthesized malaria vaccine Spf66. Vaccine 1992; 10(3): 179-84
23. Patarroyo ME, Amador R, Clavijo P, Moreno A, Guzmán F, Romero P et al. Synthetic vaccine protects humans against challenge with asexual blood stages of Plasmodium falciparum Malaria. Nature 1988; 323: 158-61
24. Valero MV, Amador R, Aponte JJ, Narváez A, Galindo C, Silva Y et al. Evaluation of Spf66malaria vaccine during a 22-month follow-up field trial in the Pacific Coast of Colombia. Vaccine 1996; 14(15): 1466-70
25. Molano A, Segura C, Guzmán F, Lozada D, Patarroyo ME. In human malaria protective antibodies are directed mainly against the Lys-Glu-Lys motif of the synthetic vaccine SPf-66. Parasite Immunol 1992; 14: 111-24
26. Tam JP, Zavala F. Multiple antigen peptide. A novel approach to increase detection sensitivity of synthetic peptides in solid-phase immunoassays. J Immunol Methods 1989; 124: 53-61
27. Chaves F, Calvo JC, Carvajal C, Rivera Z, Ramírez LE, Pinto M et al. Synthesis, isolation and characterization of Plasmodium falciparum antigenic tetrabranched peptide dendrimers obtained by thiazolidine linkages. J Pept Res 2001 Oct; 58(4): 307-16
28. Rivera Z, Granados G, Pinto M, Carvajal C, Chaves F, Calvo JC et al. Double dimer peptide constructs are immunogenic and protective against Plasmodium falciparum in the experimental Aotus monkey model. J Pept Res 2002 Feb; 59(2): 62-70
29. Argüello G, Lozano JM. Actividad in vitro de péptidos antimicrobianos sintéticos en cepas de S. mutans. Univ Odontol 1999 May; 19(38): 7-12
30. Senpuku H, Yanagi K, Nisizawa T. Streptococcus mutans PAc peptides. Immunol 1998; 95: 322-30
31. Rose K, Zeng W, Brown LE, Jackson DC. A synthetic peptide-based polyoxime vaccine construct of high purity and activity. Mol Immunol 1995; 32: 1031-7
32. Sarin PS, Mora CA, Naylor PH, Markham R, Schwartz D, Kahn J et al. A HIV-1 p17 synthetic peptide vaccine HGP-30: Induction of immune response in human subjects and preliminary evidence of protection against HIV challenge in SCID mice. Cell Mol Biol 1995; 41: 401-7
33. Reynolds SR, Shoemaker CB, Harn DA. T and B cell epitope mapping of Sm23, an integral membrane protein of Schistosoma mansoni. J Immunol 1992; 149: 3995-4001
34. Steward MW, Partidos CD, D’Mello F, Howard CR. Specificity of antibodies reactive with hepatitis B surface antigen following immunization with synthetic peptides. Vaccine 1993; 11: 1405-14
35. Linehan DC, Goedegebuure PS, Eberlein TJ. Vaccine therapy for cancer. Ann Surg Oncol 1996; 3: 219-28
36. Avichezer D, Taylor-Papadimitriou J, Arnon R. A short synthetic peptide (DTRPAP) induces antimucin (MUC-1) antibody, which is reactive with human ovarian and breast cancer cells. Cancer Biochem Biophys 1998 Jun; 16(1-2): 113-28
37. Puentes F, Guzmán F, Marín V, Alonso C, Patarroyo ME, Moreno A. Leishmania: Fine mapping of the Leishmanolysin molecule’s
conserved core domains involved in binding and internalization. Exp Parasitol 1999 Sep; 93(1): 7-22
38. Morales G, Carrillo G, Requena JM, Guzmán F, Gómez LC, Patarroyo ME et al. Mapping of the antigenic determinants of the Leishmania infantum gp63 protein recognized by antibodies elicited
during canine visceral Leishmaniasis. Parasitol 1997; 114: 507-16
39. Robinson J, Rosas M, Guzmán F, Patarroyo ME, Moreno A. Comparison of prevalence of anti-hepatitis C virus antibodies in differing South American populations. J Med Virol 1996; 50: 188-
92
40. Patarroyo ME, Parra CA, Pinilla C, del Portillo P, Torres ML, Clavijo P et al. Immunogenic synthetic peptides against mycobacteria of potential immunodiagnostic and immunoprophylactic value.Lepr Rev 1986; 2: 163-8
41. Calvo JC, Barrera NF, García JA, Guzmán F,Espejo F, Patarroyo ME. Síntesis de la oxitocina en fase sólida usando terbutoxicarbonilo y fluorenilmetoxicarbonilo derivados. Rev Colombiana Química 1999; 28 (1): 19-25
42. Lozano JM, Espejo F, Díaz D, Pinzón C, Rodríguez J, Calvo JC et al. Reduced amide pseudopeptide analogues of a malaria peptide posses secondary structural elements responsible for induction of
functional antibodies which react with Plasmodium falciparum erythrocytic forms. J Pept Res 1998; 52(6): 457-69
43. Lioy E, Suárez J, Guzmán F, Siegerist S, Pluschke G, Patarroyo ME. Synthesis, biological and immunological properties of cyclic peptides from Plasmodium falciparum merozoite surface
protein-1. Angew Chem Int Ed Engl 2001; 40(14): 2631-5
44. Espejo F, Cubillos M, Salazar LM, Guzmán F, Urquiza M, Ocampo M et al. Structure, immunogenicity and protectivity relationship of
the 1585 malarial peptide and its substitution analogs. Angew Chem Int Ed Engl 2001 Dec 17; 40(24): 4654-7
45. Brass JM, Frank J, Wagner FW, Stocker H. Semisynthesis of peptide- new strategy for specific protection and deprotection of the
—amino group of recombinantly—produced peptide fragments. Collection Symposium Series 1999; 1: 165-77
46. Meldal M, St Hilaire PM. Synthetic methods of glycopeptide assembly, and biological analysis of glycopeptide products. Curr Op Chem Biol 1997, 1: 552-63
47. Herzner H, Reipen T, Schultz M, Kunz H. Synthesis of glycopeptides containing carbohydrate and peptide recognition motifs. Chem Rev 2000 Dec 13; 100(12): 4495-538
48. Varon D, Lioy E, Patarroyo ME, Unverzagt C. Synthesis of mannosyl and oligomannosyl threonine building blocks derived from MPT32 glycoprotein of Mycobacterium tuberculosis. Aust J Chem 2002; 55: 1-5
49. Ostresh JM, Husar GM, Blondelle SE, Dorner B, Weber PA, Houghten RA. Related articles from libraries: Chemical transformation of combinatorial libraries to extend the range and repertoire of chemical diversity. Proc Natl Acad Sci USA 1994; 91(23): 11138-42
Cómo citar
Guzmán Quimbayo, F. (2021). Péptidos sintéticos: una herramienta para el desarrollo de vacunas y agentes terapéuticos. Universitas Odontologica, 24(54-55), 120–124. Recuperado a partir de https://revistas.javeriana.edu.co/index.php/revUnivOdontologica/article/view/13578
Sección
Ciencias Básicas, Biotecnología y Bioinformática