Biocompatibilidad del fosfato tricálcico con quitosano para uso en regeneración ósea / Biocompatibility of tricalcium phosphate with chitosan for bone regeneration purposes
##plugins.themes.bootstrap3.article.details##
RESUMEN. Antecedentes: Se busca desarrollar injertos óseos biocompatibles capaces de regenerar defectos óseos de tamaño crítico. Objetivo: Evaluar la biocompatibilidad in vivo del fosfato tricálcico con quitosano (FTQ) en piel, músculo y hueso. Metodología: Se asignaron 15 ratas Wistar a grupos A (piel), B (músculo), C, D y E (defectos óseos de tamaño crítico). Se implantó FTQ en cada tejido. Como control se colocaron esponjas de colágeno adyacente a los sitios evaluados. Las ratas de los grupos A y B se sacrificaron a los 20 días, mientras que las de los grupos C, D y E se sacrificaron a los 20, 40 y 80 días respectivamente. Para confirmar la biocompatibilidad del FTQ, se evaluó la respuesta inflamatoria en términos de porcentaje: ninguna (0 %), leve (˂30 %), moderada (30-50 %) y alta (˃50 %), después de 20, 40 y 80 días en el tejido óseo. Resultados: No se encontró ulceración ni supuración en piel, músculo o hueso. Después de 80 días, el FTQ se observaba incorporado a tejido fibrótico y oseointegrado al hueso nativo. Conclusión: El FTQ fue biocompatible in vivo en piel, músculo y hueso.
ABSTRACT. Background: It is necessary to develop bone grafts capable to regenerate critical size bone defects. Objective: To evaluate the biocompatibility in vivo of tricalcium phosphate with chitosan (TPC) in skin, muscle, and bone. Methods: 15 Wistar rats were assigned to groups A (skin), B (muscle), C, D, and E (bone). TPC was placed in each tissue. In groups C-E, critical size bone defect was grafted with TPC and collagen sponge was placed adjacent to test sites as a control. Animals from groups A and B were sacrificed after 20 days, while groups C-E at days 45, 60, and 80. Inflammatory response was evaluated in all tissues. To assess biocompatibility, the percentage of cells was evaluated as none (0 %), low (˂ 30 %), moderate (30- 50 %), and high (˃50 %). Results: There were no signals of ulceration or suppuration in skin, muscle, and bone. After 80 days, TPC was incorporated into a fibrotic structure and osseointegrated to native bone. Conclusion: TPC was biocompatible with skin, muscle, and bone.
β-fosfato, biocompatibilidad, biomaterial, defecto óseo, hueso, periodoncia, quitosano, regeneración, regeneración ósea, tricálcico
2. Nasr HF, Aichelmann-Reidy ME, Yukna RA. Bone and bone substitutes. Periodontology 2000. 1999; 19: 74-86.
3. Misch CM. Autogenous bone: is it still the gold standard? Implant Dent. 2010; 19(5): 361.
4. Rossi AC, Freire AR, Prado FB, Caria PHF. Bone substitutes used in dentistry. Int J Odontostomatol. 2014; 8(2): 289-98.
5. Kim Y, Nowzari H, Rich SK. Risk of prion disease transmission through bovine-derived bone substitutes: a systematic review. Clin Implant Dent Related Res. 2013; 15(5): 645-53.
6. Sogal A, Tofe AJ. Risk assessment of bovine spongiform encephalopathy transmission through bone graft material derived from bovine bone used for dental applications. J Periodontol. 1999; 70(9): 1053-63.
7. Wenz B, Oesch B, Horst M. Analysis of the risk of transmitting bovine spongiform encephalopathy through bone grafts derived from bovine bone. Biomaterials. 2001; 22(12): 1599-606.
8. Lee K, Weir MD, Lippens E, Mehta M, Wang P, Duda GN, et al. Bone regeneration via novel macroporous CPC scaffolds in critical-sized cranial defects in rats. Dent Mater. 2014; 30(7): E199-E207.
9. Sculean A, Chapple ILC, Giannobile WV. Wound models for periodontal and bone regeneration: the role of biologic research. Periodontology 2000. 2015; 68(1): 7-20.
10. Yao CH, Liu BS, Hsu SH, Chen YS. Calvarial bone response to a tricalcium phosphate-genipin crosslinked gelatin composite. Biomaterials. 2005; 26(16): 3065-74.
11. Schlichting K, Dahne M, Weiler A. Biodegradable composite implants. Sports Med Arthrosc Rev. 2006; 14(3): 169-76.
12. Szabo G, Suba Z, Hrabak K, Barabas J, Nemeth Z. Autogenous bone versus beta-tricalcium phosphate graft alone for bilateral sinus elevations (2- and 3-dimensional computed tomographic, histologic, and histomorphometric evaluations): preliminary results. Int J Oral Maxillofac Implants. 2001; 16(5): 681-92.
13. Sato I, Akizuki T, Oda S, Tsuchioka H, Hayashi C, Takasaki AA, et al. Histological evaluation of alveolar ridge augmentation using injectable calcium phosphate bone cement in dogs. J Oral Rehab. 2009; 36(10): 762-9.
14. Kurashina K, Kurita H, Hirano M, Kotani A, Klein C, deGroot K. In vivo study of calcium phosphate cements: Implantation of an alpha-tricalcium phosphate dicalcium phosphate dibasic tetracalcium phosphate monoxide cement paste. Biomaterials. 1997; 18(7): 539-43.
15. Lee YM, Park YJ, Lee SJ, Ku Y, Han SB, Choi SM, et al. Tissue engineered bone formation using chitosan/tricalcium phosphate sponges. J Periodontol. 2000; 71(3): 410-7.
16. Muzzarelli RAA. Chitosan composites with inorganics, morphogenetic proteins and stem cells, for bone regeneration. Carbohydrate Polymers. 2011; 83(4): 1433-45.
17. Di Martino A, Sittinger M, Risbud MV. Chitosan: A versatile biopolymer for orthopaedic tissue-engineering. Biomaterials. 2005; 26(30): 5983-90.
18. Larsson KS. Screening-tests for systemic effects of dental materials. J Dent. 1994; 22: S12-S5.
19. Putters TF, Schortinghuis J, Vissink A, Raghoebar GM. A prospective study on the morbidity resulting from calvarial bone harvesting for intraoral reconstruction. Int J Oral Maxillofac Surg. 2015; 44(4): 513-7.
20. Arce Guerrero S, Valencia Llano C, Garzón-Alvarado DA. Obtención de un biocompuesto constituido por fosfato tricálcico y quitosana para ser usado como sustituto óseo en un modelo animal. Rev Cub Inv Biomed. 2012; 31(3): 268-77.
21. Ohura K, Bohner M, Hardouin P, Lemaitre J, Pasquier G, Flautre B. Resorption of, and bone formation from, new beta-tricalcium phosphate-monocalcium phosphate cements: An in vivo study. J Biomed Mater Res. 1996; 30(2): 193-200.
22. Fernandez T, Olave G, Valencia CH, Arce S, Quinn JMW, Thouas GA, et al. Effects of Calcium phosphate/chitosan composite on bone healing in rats: calcium phosphate induces osteon formation. Tissue Engineering Part A. 2014; 20(13-14): 1948-60.
23. Klokkevold PR, Vandemark L, Kenney EB, Bernard GW. Osteogenesis enhanced by chitosan (poly-N-acetyl glucosaminoglycan) in vitro. J Periodontol. 1996; 67(11): 1170-5.
24. Russel WMS, Burch RL. The principles of human experimental technique (1959). The global clearinghouse for information on alternatives to animal testing. Baltimore, MD: Johns Hopkins University; 2014. Disponible en: http://altweb.jhsph.edu/pubs/books/humane_exp/het-toc.
25. Shukla SK, Mishra AK, Arotiba OA, Mamba BB. Chitosan-based nanomaterials: A state-of-the-art review. Int J Biol Macromol. 2013; 59: 46-58.