Publicado dic 30, 2015



PLUMX
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar


Sandra Gutiérrez Prieto

Diana Torres López

Mariluz Gómez Rodríguez

Adriana García Robayo

##plugins.themes.bootstrap3.article.details##

Resumen

RESUMEN. Antecedentes: El gen noggin  (Nog) es uno de los antagonistas de las proteínas morfogénicas óseas (BMPs)  y tiene como función modular la señal de estas. Cuando su acción no es efectiva, ocurre una actividad excesiva de las BMPs que causa serias anormalidades en el desarrollo. Estudios han demostrado que Nog es crítico para la condrogénesis, osteogénesis y formación de las articulaciones y parece estar involucrado con el crecimiento de estructuras craneofaciales, entre ellas, la mandíbula. Existen en la literatura pocos estudios acerca de la relación entre Nog  y su papel en el desarrollo mandibular. Objetivo: Esta revisión hace una descripción de  los factores moleculares que intervienen en la formación de la mandíbula. Se hace un énfasis principalmente en las BMPs, su función, vía de señalización y cómo Nog regula esta vía, para conducir a  formular una  hipótesis del posible papel de este gen en el desarrollo mandibular y cómo su alteración podría llegar a causar el micrognatismo mandibular.

ABSTRACT. Background: Noggin (Nog) gene is one of the antagonists of bone morphogenic proteins (BMPs) and its function is to modulate the signs. When Nog’s action is ineffective, an excessive activity of BMPs occur causing serious developmental abnormalities. Studies have shown that Nog is critical for chondrogenesis, osteogenesis, and joint training and appears to be involved in the growth of craniofacial structures, including the jaw. There are in the literature, few studies about the relationship between Nog and its role in the mandibular development. Purpose: This article reviews the molecular factors involved in the jaw development, focusing primarily on BMPs, their function, signaling pathway as Nog regulates this path. It leads to hypothesize the Nog’s possible role on the mandibular development and how its alteration can cause mandibular micrognatism.

RESUMO. Antecedente: O gene Noggin (Nog) é um dos antagonistas das proteínas morfogênicas ósseas (BMPs) e tem como função modular o sinal das mesmas. Quando sua ação não é efetiva, ocorre uma atividade excessiva das BMPs causando sérias anormalidades no desenvolvimento. Estudos veem demonstrando que Nog é essencial para a condrogênesis, osteogênesis, formação das articulações e parece estar envolvido com o crescimento de estruturas craniofaciais, incluindo a mandíbula. Na literatura há poucos estudos sobre a relação entre Nog e seu papel no desenvolvimento mandibular. Objetivo: Esta revisão fornece uma descrição do desenvolvimento da mandíbula, os fatores moleculares envolvidos na sua formação, com ênfases principalmente nas BMPs, sua função, via de sinalização e como Nog regula esta via, levando-nos a formular uma hipóteses do possível papel de Nog no desenvolvimento mandibular e como sua alteração poderia causar micrognatismo mandibular.

 

Keywords
References
1. Le Douarin NM, Kalcheim C. The Neural Crest. 2nd edition. New York, NY: Cambridge University Press; 1999.
2. Mina M, Kollar EJ. The induction of odontogenesis in non-dental mesenchyme combined with early murine mandibular arch epithelium. Arch Oral Biol. 1987; 32(2): 123-7.
3. Tucker A, Sharpe P. The cutting-edge of mammalian development; how the embryo makes teeth. Nat Rev Genet. 2004 Jul; 5(7): 499-508.
4. Neubuser A, Peters H, Balling R, Martin GR. Antagonistic interactions between FGF and BMP signaling pathways: a mechanism for positioning the sites of tooth formation. Cell. 1997 Jul 25; 90 (2): 247-55.
5. Walsh DW, Godson C, Brazil DP, Martin F. Extracellular BMP antagonist regulation in development and disease tied up in knots. Trends Cell Biol. 2010 May; 20(5): 244-56. doi: 10.1016/j.tcb.2010.01.008.
6. Gazzerro E, Canalis E. Bone morphogenetic proteins and their antagonists. Rev Endocr Metab Disord. 2006 Jun; 7(1-2): 51-65.
7. Avsian-Kretchmer O, Hsueh AJ. Comparative genomic analysis of the eight membered ring cystine knot containing bone morphogenetic protein antagonists. Mol Endocrinol. 2004 Jan; 18(1): 1-12.
8. Sudo S, Avsian-Kretchmer O, Wang LS, Hsueh AJ. Protein related to DAN and cerberus is a bone morphogenetic protein antagonist that participates in ovarian paracrine regulation. J Biol Chem. 2004 May 28; 279(22): 23134-41.
9. Mason ED, Konrad KD, Webb CD, Marsh JL. Dorsal midline fate in Drosophila embryos requires twisted gastrulation, a gene encoding a secreted protein related to human connective tissue growth factor. Genes Dev. 1994 Jul 1; 8(13): 1489-501.
10. Ross JJ, Shimmi O, Vilmos P, Petryk A, Kim H, Gaudenz K, Hermanson S, Ekker SC, O'Connor MB, Marsh JL. Twisted gastrulation is a conserved extracellular BMP antagonist. Nature. 2001 Mar 22; 410(6827): 479-83.
11. Sasai Y, Lu B, Steinbeisser H, De Robertis EM. Regulation of neural induction by the Chd and Bmp-4 antagonistic patterning signals in Xenopus. Nature. 1995 Jul 27; 376(6538): 333-6.
12. Garcia Abreu J, Coffinier C, Larrain J, Oelgeschlager M, De Robertis EM. Chordin like CR domains and the regulation of evolutionarily conserved extracellular signaling systems. Gene. 2002 Apr 3; 287(1-2): 39-47.
13. Groppe J, Greenwald J, Wiater E, Rodriguez-Leon J, Economides AN, Kwiatkowski W, Affolter M, Vale WW, Izpisua Belmonte JC, Choe S. Structural basis of BMP signaling inhibition by the cystine knot protein Noggin. Nature. 2002 Dec 12; 420 (6916): 636-42.
14. Re’em Kalma Y, Lamb T, Frank D. Competition between noggin and bone morphogenetic protein 4 activities may regulate dorsalization during Xenopus development. Proc Natl Acad Sci U S A. 1995 Dec 19; 92(26): 12141-5.
15. Smith WC, Harland RM. Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos. Cell. 1992 Sep 4; 70(5): 829-40.
16. Zimmerman LB, De Jesus-Escobar JM, Harland RM. The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell. 1996 Aug 23; 86(4): 599-606.
17. McMahon JA, Takada S, Zimmerman LB, Fan CM, Harland RM, McMahon AP. Noggin mediated antagonism of BMP signaling is required for growth and patterning of the neural tube and somite. Genes Dev. 1998 May 15; 12(10): 1438-52.
18. Hirsinger E, Duprez D, Jouve C, Malapert P, Cooke J, Pourquie O. Noggin acts downstream of Wnt and Sonic Hedgehog to antagonize BMP4 in avian somite patterning. Development. 1997 Nov; 124(22): 4605-14.
19. Pathi S, Rutenberg JB, Johnson RL, Vortkamp A. Interaction of Shh and BMP/Noggin signaling during cartilage differentiation. Dev Biol. 1999 May 15; 209(2): 239-53.
20. Gong Y, Krakow D, Marcelino J, Wilkin D, Chitayat D, Babul-Hirji R, Hudgins L, Cremers CW, Cremers FP, Brunner HG, Reinker K, Rimoin DL, Cohn DH, Goodman FR, Reardon W, Patton M, Francomano CA, Warman ML. Heterozygous mutations in the gene encoding noggin affect human joint morphogenesis. Nat Genet. 1999; 21: 302-4.
21. Tylzanowski P, Mebis L, Luyten FP. The Noggin null mouse phenotype is strain dependent and haploinsufficiency leads to skeletal defects. Dev Dyn. 2006 Jun; 235(6): 1599-607.
22. Sawako M, Kazunori N, Hideki M, Satoko U, Yuko M, Hiroki K, Tatsuo M. A mutation in the heparin-binding site of noggin as a novel mechanism of proximal symphalangism and conductive hearing loss. Biochem Biophys Res Commun. 2014 May 9; 447(3): 496-502. doi: 10.1016/j.bbrc.2014.04.015.
23. Matsui M, Klingensmith J. Multiple tissue-specific requirements for the BMP antagonist Noggin in development of the mammalian craniofacial skeleton. Dev Biol. 2014 Aug 15; 392(2): 168-81. doi: 10.1016/j.ydbio.2014.06.006.
24. Arnett GW, Milam SB, Gottesman L. Progressive mandibular retrusion-idiopathic condylar resorption. Part I. Am J Orthod Dentofacial Orthop. 1996 Jul; 110(1): 8-15.
25. Bryndahl F, Eriksson L, Legrell PE, Isberg A. Bilateral TMJ disk displacement induces mandibular retrognathia. J Dent Res. 2006 Dec; 85(12): 1118-23.
26. Symons NBB. Studies on the growth and form of the mandible. Dent Rec (London). 1951 Mar; 71(3): 41-53.
27. Copray JC, Jansen HW, Duterloo HS. Growth and growth pressure of mandibular condylar and some primary cartilages of the rat in vitro. Am J Orthod Dentofacial Orthop. 1986 Jul; 90(1): 19-28.
28. Bareggi R, Sandrucci MA, Baldini G, Grill V, Zweyer M, Narducci P. Mandibular growth rates in human fetal development. Arch Oral Biol. 1995 Feb; 40(2): 119-25.
29. Ben-Ami Y, Lewinson D, Silbermann M. Structural characterization of the mandibular condyle in human fetuses: light and electron microscopy studies. Acta Anat (Basel). 1992; 145(1): 79-87.
30. Enlow DH. Handbook of Facial Growth, 3rd edition. Philadelphia, PA: W. B. Saunders; 1990.
31. Ramírez-Yanez GO, Young WG, Daley TJ, Waters MJ. Influence of growth hormone on the mandibular condyle of rats. Arch Oral Biol. 2004 Jul; 49(7): 585-90.
32. Carlevaro MF, Cermelli S, Cancedda R, Descalzi Cancedda F. Vascular endotelial growth Factor (VEFG) en cartilage neovascularization and chondrocyte differentiation: Autoparacrine role during endochondral bone formation. J Cell Sci. 2000 Jan; 113 (Pt 1): 59-69.
33. Xiong H, Rabie AB, Haag U. Neovascularization and mandibular condylar bone remodeling in adult rats under mechanical strain. Front Biosci. 2005 Jan 1; 10: 74-82.
34. Papadopoulou AK, Papachristou DJ, Charzoupoulos SA, Pirttiniemi P, Papavassiliou AG, Baudra EK. Load application induces changes in the expression levels of Sox9, FGFR-3 and VEFG in condylar chondrocytes. FEBS Lett. 2007 May 15; 581(10): 2041-6.
35. Mohan S, Baylink DJ. Bone growth factors. Clin Orthop Relat Res. 1991 Feb; (263): 30-48.
36. Minuto F, Palermo C, Arbigo M, Barreca AM. The IGF system and Bone. J Endocrinol Invest. 2005; 28(8 Suppl): 8-10.
37. Alini M, Marriott A, Chen T, Abe S, Poole AR. A novel angiogenic molecule produced at the time condrocyte hypertrophy during endochondral formation. Dev Biol. 1996 May 25; 176(1): 124-32.
38. Ornitz DM, Marie PJ. FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes Dev. 2002 Jun 15; 16(12): 1446-65.
39. Frank DU, Fotheringham LK, Brewer JA, Muglia LJ, Tristani-Firouzi M, Capecchi MR, Moon AM. An Fgf8 mouse mutant phenocopies human 22q11 deletion syndrome. Development. 2002 Oct; 129(19): 4591-603.
40. Trumpp A, Depew MJ, Rubenstein JL, Bishop JM, Martin GR. Cre-mediated gene inactivation demonstrates that FGF8 is required for cell survival and patterning of the first branchial arch. Genes Dev. 1999 Dec 1; 13(23): 3136-48.
41. Ballock RT, Heydemann A, Wakefield LM, Flanders KC, Roberts AB, Sporn MB. TGF-beta-1 prevents hypertrophy of epiphyseal condrocytes: Regulation of gene expression for cartilage matrix proteins and metalloproteases. Dev Biol. 1993 Aug; 158(2): 414-29.
42. Li XB, Zhou Z, Luo SJ. Expressions of IGF-1 and TGF-β1 in the condylar cartilages of rapidly growing rats. Chin J Dent Res. 1998 Sep; 1(2): 52-6.
43. Delatte M, Von den Hoff JW, Malta JC, Kuijpers-Jagtman AM. Growth regulation of the rat mandibular condyle and femoral head by transforming growth factor- (beta) 1, fibroblast growth factor-2 and insulin-like growth factor -1. Eur J Orthod. 2005 Feb; 27(1): 17-26.
44. Vortkamp A, Lee K, Lanske B, Segre GV, Kronenberg HM, Tabin CJ. Regulation of rate of cartilage differentiation by Indian Hedgehog and PTH-related protein. Science. 1996 Aug 2; 273(5275): 613-22.
45. Vortkamp A, Pathi S, Peretti GM, Caruso EM, Zaleske DJ, Tabin CJ. Recapitulation of signals regulating embryonic bone formation during postnatal growth and in fracture repair. Mech Dev. 1998 Feb; 71(1-2): 65-76.
46. Shibukawa Y, Young B, Wu C, Yamada S, Long F, Pacifi M, Koyama E. Temporomandibular joint formation and condyle growth require Indian hedgehog signaling. Dev Dyn. 2007 Feb; 236(2): 426-34.
47. Ueno T, Kagawa T, Kanou M, Fujii T, Fukunaga J, Mizukawa N, Sugahara T, Yamamoto T. Immunohistochemical observations of cellular differentiation and proliferation in endochondral bone formation from grafted periosteum: Expression and localization of BMP-2 and- 4 in the grafted periosteum. J Craniomaxillofac Surg. 2003 Dec; 31(6): 356-61.
48. Ng LJ, Weatley S, Muscat GEO, Conway-Campbell J, Bowles J, Wrigth E, Bell DM, Tam PP, Cheah KS, Koopman P. SOX9 binds DNA, activates transcription and coexpresses with type II collagen during chondrogenesis in the mouse. Dev Biol. 1997 Mar 1; 183(1): 108-21.
49. Rabie AB, She TT, Haag U. Functional appliance therapy accelerates and enhances condylar growth. Am J Orthod Dentofacial Orthop. 2002 Oct; 122(4): 401-9.
50. Stottmann RW, Anderson RM, Klingensmith J. The BMP antagonists Chordin and Noggin have essential but redundant roles in mouse mandibular outgrowth. Dev Biol. 2001 Dec 15; 240(2): 457-73.
51. Rabie AB, Tang GH, Hagg U. Cbfa1 couples chondrocytes, maturation and endochondral ossification in rat mandibular condylar cartilage. Arch Oral Biol. 2004 Feb; 49(2): 109-18.
52. Pecina M, Vukicevic S. Biological aspects of bone, cartilage and tendon regeneration. Int Orthop. Dec 2007 31(6): 719-20.
53. Sipe JB, Zhang J, Waits C, Skikne B, Garimella R, Anderson HC. Localization of bone morphogenetic proteins (BMPs)-2, -4, and -6 within megakaryocytes and platelets. Bone. 2004 Dec; 35(6): 1316-22.
54. Ducy P, Karsenty G. The family of bone morphogenetic proteins Kidney Int. 2000 Jun; 57(6): 2207-14.
55. Lissenberg-Thunnissen SN, de Gorter DJ, Sier CF, Schipper IB. Use and efficacy of bone morphogenetic proteins in fracture healing. Int Orthop. 2011 Sep; 35(9): 1271-80. doi: 10.1007/s00264-011-1301-z.
56. Leboy P, Grasso-Knight G, D’Angelo M, Volk SW, Lian JV, Drissi H, Stein GS, Adams SL. Smad-Runx interactions during chondrocyte maturation. J Bone Joint Surg Am. 2001; 83-A Suppl 1(Pt 1): S15-22.
57. Butler SJ, Dodd J. A role for BMP heterodimers in roof plate-mediated repulsion of commissural axons. Neuron. 2003 May 8; 38(3): 389-401.
58. Griffith DL, Keck, PC. Sampath TK, Rueger DC, Carlson WD. Three-dimensional structure of recombinant human osteogenic protein 1: structural paradigm for the transforming growth factor beta superfamily. Proc Natl Acad Sci U S A. 1996 Jan 23; 93(2): 878-83.
59. Miyazono K, Hellman U, Wernstedt C, Heldin CH. Latent high molecular weight complex of transforming growth factor beta 1. Purification from human platelets and structural characterization. J Biol Chem. 1988 May 5; 263(13): 6407-15.
60. Heinecke K, Seher A, Schmitz W, Mueller TD, Sebald W, Nickel J. Receptor oligomerization and beyond: a case study in bone morphogenetic proteins. BMC Biol. 2009 Sep 7; 7: 59. doi: 10.1186/1741-7007-7-59.
61. Lowery JW. Amich JM, Andonian A, Rosen V. N-linked glycosylation of the bone morphogenetic protein receptor type 2 (BMPR2) enhances ligand binding. Cell Mol Life Sci. 2014 Aug; 71(16): 3165-72. doi: 10.1007/s00018-013-1541-8.
62. Gazzerro E, Gangji V, Canalis E. Bone morphogenetic proteins induce the expression of noggin, which limits their activity in cultured rat osteoblasts. J Clin Invest. 1998 Dec 15; 102(12): 2106-14.
63. Carreira AC, Lojudice FH, Halcsik E, Navarro RD, Sogayar MC, Granjeiro JM. Bone morphogenetic proteins: facts, challenges, and future perspectives. J Dent Res. 2014 Apr; 93(4): 335-45. doi: 10.1177/0022034513518561.
64. Wang G, Zhang H, Zhao Y, Li J, Cai J, Wang P , Meng S, Feng J, Miao C, Ding M, Li D, Deng H. Noggin and bFGF cooperate to maintain the pluripotency of human embryonic stem cells in the absence of feeder layers. Biochem Biophys Res Commun. 2005 May 13; 330(3): 934-42.
65. Schwaninger R, Rentsch CA, Wetterwald A, van der Pluijm G, Löwik CW, Ackermann K, Pyerin W, Hamdy FC, Thalmann GN, Cecchini MG. Lack of noggin expression by cancer cells is a determinant of the osteoblast response in bone metastases. Am J Pathol. 2007 Jan; 170(1): 160-75.
66. Anderson RM, Lawrence AR, Stottmann RW, Bachiller DJ, Klingensmith J. Chordin and noggin promote organizing centers of forebrain development in the mouse. Development. 2002 Nov; 129(21): 4975-87
67. Reddi AH. Role of morphogenetic proteins in skeletal tissue engineering and regeneration. Nat Biotechnol. 1998 Mar; 16(3): 247-52.
68. Sampath TK, Maliakal JC, Hauschka PV, Jones WK, Sasak H, Tucker RF, White KH, Coughlin JE, Tucker MM, Pang RH. Recombinant human osteogenic protein-1 (hOP-1) induces new bone formation in vivo with a specific activity comparable with natural bovine osteogenic protein and stimulates osteoblast proliferation and differentiation in vitro. J Biol Chem. 1992 Oct 5; 267(28): 20352-62.
69. Wozney JM, Rosen V. Bone morphogenetic protein and bone morphogenetic protein gene family in bone formation and repair. Clin Orthop Relat Res. 1998 Jan; (346): 26-37
70. Winkler DG, Yu C, Geoghegan JC, Ojala EW, Skonier JE, Shpektor D, Sutherland MK, Latham JA. Noggin and sclerostin bone morphogenetic protein antagonists form a mutually inhibitory complex. J Biol Chem. 2004 Aug 27; 279(35): 36293-8.
71. Abe E, Yamamoto M, Taguchi Y, Lecka-Czernik B, O'Brien CA, Economides AN, Stahl N, Jilka RL, Manolagas SC. Essential requirement of BMPs-2/4 for both osteoblast and osteoclast formation in murine bone marrow cultures from adult mice: antagonism by noggin. J Bone Miner Res. 2000 Apr; 15(4): 663-73.
72. Koenig BB, Cook JS, Wolsing DH, Ting J, Tiesman JP, Correa PE. Characterization and cloning of a receptor for BMP-2 and BMP-4 from NIH 3T3 cells. Mol Cell Biol. 1994 Sep; 14(9): 5961-74.
73. Greenwald J, Groppe J, Gray P, Wiater E, Kwiatkowski W, Vale W. The BMP7/ActRII extracellular domain complex provides new insights into the cooperative nature of receptor assembly. Mol Cell. 2003 Mar; 11(3): 605-17.
74. Dudas M, Sridurongrit S, Nagy A, Okazaki K, Kaartinen V. Craniofacial defects in mice lacking BMP type I receptor Alk2 in neural crest cells. Mech Dev. 2004 Feb; 121(2): 173-82.
75. Ekanayake S, Hall BK. The in vivo and in vitro effects of bone morphogenetic protein-2 on the development of the chick mandible. Int J Dev Biol. 1997 Feb; 41(1): 67-81.
76. Mina M, Wang YH, Ivanisevic AM, Upholt WB, Rodgers B. Region- and stage-specific effects of FGFs and BMPs in chick mandibular morphogenesis. Dev Dyn. 2002 Mar; 223(3): 333-52.
77. Wilson J, Tucker AS. Fgf and Bmp signals repress the expression of Bapx1 in the mandibular mesenchyme and control the position of the developing jaw joint. Dev Biol. 2004 Feb 1; 266(1): 138-50.
78. Brown DJ, Kim T, Petty E, Downs C, Martin D, Strouse PJ, Moroi SE, Milunsky JM, Lesperance MM. Autosomal dominant stapes ankylosis with broad thumbs and toes, hyperopia, and skeletal anomalies is caused by heterozygous nonsense and frameshift mutations in NOG, the gene encoding noggin. Am J Hum Genet. 2002 Sep; 71(3): 618-24. doi: 10.1086/342067.
79. Lories JU, Daans M, Derese I, Matthys P, Kasran A, Tylzanowski P, Ceuppens JL, Luyten FP. Noggin haploinsufficiency differentially affects tissue responses in destructive and remodeling arthritis. Arthritis Rheum. 2006 Jun; 54(6): 1736-46.
80. Sharov A, Mardaryev A, Sharova T, Grachtchouk M, Atoyan R, Byers R, Seykora JT, Overbeek P, Dlugosz A, Botchkarev VA. Bone morphogenetic protein antagonist noggin promotes skin tumorigenesis via stimulation of the Wnt and Shh signaling pathways. Am J Pathol. 2009 Sep; 175(3): 1303-14. doi: 10.2353/ajpath.2009.090163.
81. Chaturvedi G, Simone P, Ain R, Soares MJ, Wolf MW. Noggin maintains pluripotency of human embryonic stem cells grown on Matrigel. Cell Prolif. 2009 Aug; 42(4): 425-33. doi: 10.1111/j.1365-2184.2009.00616.x.
82. Jernvall J, Thesleff I. Reiterative signaling and patterning during mammalian tooth morphogenesis. Mech Dev. 2000 Mar 15; 92(1): 19-29.
83. Thesleff I, Sharpe P. Signaling networks regulating. Mech Dev. 1997 Oct; 67(2): 111-23.
84. Barlow AJ, Francis-West PH. Ectopic application of recombinant BMP-2 and BMP-4 can change patterning of developing chick facial primordial. Development. 1997 Jan; 124(2): 391-8.
85. Wang Y-H, Rutherford B, Uphot W, Mina M. Effects of BMP-7 on mouse tooth mesenchyme and chick mandibular mesenchyme. Dev Dyn. 1999 Dec;216(4-5): 320-35.
86. Semba I, Nonaka K, Takahashi I, Takahashi K, Dashner R, Shum L, Nuckolls GH, Slavkin HC. Positionally-dependent chondrogenesis induced by BMP4 is co-regulated by Sox9 and Msx2. Dev Dyn. 2000 Apr; 217(4): 401-14.
87. Winnier G, Blessing M, Labosky PA, Hogan BL. Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev. 1995 Sep 1; 9(17): 2105-16.
88. Wijgerde M, Karp S, McMahon J, McMahon AP. Noggin antagonism of BMP4 signaling controls development of the axial skeleton in the mouse. Dev Biol. 2005 Oct 1; 286(1): 149-57
89. Bachiller D, Klingensmith J, Kemp C, Belo JA, Anderson RM, May SR, McMahon JA, McMahon AP, Harland RM, Rossant J, De Robertis EM. The organizer factors Chordin and Noggin are required for mouse forebrain development. Nature. 2000 Feb 10; 403(6770): 658-61.
90. Lana-Elola E, Tylzanowski P, Takatalo M, Alakurtti K, Veistinen L, Mitsiadis TA, Graf D, Rice R, Luyten FP, Rice DP. Noggin null allele mice exhibit a microform of holoprosencephaly. Hum Mol Genet. 2011 Oct 15; 20(20): 4005-15. doi: 10.1093/hmg/ddr329.
91. Gutiérrez S, Gómez M, Rey A, Prieto JC. Polymorphisms of the noggin gene and mandibular micrognathia: a first approximation. Acta Odontol Latinoam. 2010; 23(1): 13-9.
92. Schmotzer CL, Shehata BM. Two cases of agnathia (otocephaly): with review of the role of fibroblast growth factor (FGF8) and bone morphogenetic protein (BMP4) in patterning of the first branchial arch. Pediatr Dev Pathol. 2008, Jul-Aug; 11 (4): 321-4.
Cómo citar
Gutiérrez Prieto, S., Torres López, D., Gómez Rodríguez, M., & García Robayo, A. (2015). Possible Role of Noggin Gene in Mandibular Development / Posible papel del gen noggin en el desarrollo mandibular. Universitas Odontologica, 34(73), 117–128. https://doi.org/10.11144/Javeriana.uo34-73.prng
Sección
Ciencias Básicas, Biotecnología y Bioinformática