Soil macrofauna in areas with different ages after Pinus patula clearcutting
pdf
PDF 2

Keywords

soil macrofauna
Andes
montane forest
restoration ecology

How to Cite

Soil macrofauna in areas with different ages after Pinus patula clearcutting. (2018). Universitas Scientiarum, 23(3), 383-417. https://doi.org/10.11144/Javeriana.SC23-3.smia
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar

Abstract

In Andean high montane areas, the establishment of exotic tree forests changes the soil dynamics and its biodiversity. Soil macrofauna act as indicators of ecosystem successional processes, and may have an important role in ecological restoration processes after clear cutting exotic tree plantations. The aim of the present study was to understand how soil macrofaunal assemblies change in areas with different ages post clear cutting of Pinus patula, and to identify the soil physico-chemical variables that better explain these variations. The macrofauna in a high montane forest was evaluated along with that of three areas with different ages post clearcutting: 0, 2.5, and 5 years after clearcutting (Yac). The effect of soil physico chemical variables on macrofauna abundance was also evaluated. Macrofauna composition changed after clearcutting. Macrofauna abundance, richness, and diversity were lower in the 0 Yac area than in the other areas. Moreover, the macrofuna similarity to the reference forest did not increase with the years after clearcutting. This is due to the changes in soil characteristics, triggered by clearcutting. Slope, temperature, bulk density, real density, loam, pH, P, Na and K were the soil variales with a positive effect on the macrofauna abundance. These physico-chemical variables should be considered when designing restoration plans for Andean forest ecosystems. Moreover, Diplopoda, Coleoptera and Chilopoda might be useful to monitor and evaluate restoration processes after Pinus spp. clearcutting, because of their high abundance, diversity and relationship with environmental conditions.

pdf
PDF 2

Richter M. Tropical mountain forests – distribution and general features, in: Gradstein J. Homeier, D. Gansert, Göttingen, Georg-August-Universität, 2008. http://www.facebook.com/l.php?u=http://goedoc.uni-goettingen.de/goescholar/bitstream/handle/goescholar/3203/gradstein_BES2.pdf&h=WAQEqEsnMAQFP0ryA-Jq_1g3-HnluORmZnc9Ky6Bv9D9qRg.

Armenteras D, Rodríguez N, Retana J, Morales M. Understanding deforestation in montane and lowland forests of the Colombian Andes, Regional Environmental Change, 11: 693–705, 2011. doi:10.1007/s10113-010-0200-y.

Allan E, Weisser WW, Fischer M, Schulze ED, Weigelt A, Roscher C, Baade J, Barnard RL, Beßler H, Buchmann N, Ebeling A, Eisenhauer N, Engels C, Fergus AJF, Gleixner G, Gubsch M, Halle S, Klein AM, Kertscher I, Kuu A, Lange M, Le Roux X, Meyer ST, Migunova VD, Milcu A, Niklaus PA, Oelmann Y, Pašalić E, Petermann JS, Poly F, Rottstock T, Sabais ACW, Scherber C, Scherer-Lorenzen M, Scheu S, Steinbeiss S, Schwichtenberg G, Temperton V, Tscharntke T, Voigt W, Wilcke W, Wirth C, Schmid B. A comparison of the strength of biodiversity effects across multiple functions, Oecologia, 173: 223–237, 2013. doi:10.1007/s00442-012-2589-0.

Balthazar V, Vanacker V, Molina A, Lambin EF. Impacts of forest cover change on ecosystem services in high Andean mountains, Ecological Indicators, 48: 63–75, 2015. doi:10.1016/j.ecolind.2014.07.043.

Rodríguez N, Armenteras D, Retana J. National ecosystems services priorities for planning carbon and water resource management in Colombia, Land Use Policy, 42: 609–618, 2015. doi:10.1016/j.landusepol.2014.09.013.

Echeverría C, Smith-Ramírez C, Aronson J,Barrera-Cataño JI. Good news from Latin America and the Caribbean: national and international restoration networks are moving ahead, Restoration Ecology, 23: 1–3, 2015. doi:10.1111/rec.12174.

Lal R. Soil Carbon Sequestration Impacts on Global Climate Change and Food Security, Science, 304: 1623–1627, 2004. doi:10.1126/science.1097396.

Armenteras D, Cabrera E, Rodríguez N, Retana J. National and regional determinants of tropical deforestation in Colombia, Regional Environmental Change, 13: 1181–1193, 2013. doi:10.1007/s10113-013-0433-7.

Cavelier J, Santos C. Efectos de plantaciones abandonadas de especies exóticas y nativas sobre la regeneración natural de un bosque montano en Colombia, Revista de Biología Tropical, 47: 775–784, 1999.

Endo M. CAMCORE: Twelve years of contribution to reforestation in the Andean region of Colombia, Forest Ecology and Management, 63: 219–233, 1994. doi:10.1016/0378-1127(94)90112-0.

Ponge JF. Plant-soil feedbacks mediated by humus forms: A review, Soil Biology and Biochemistry, 57: 1048–1060, 2013. doi:10.1016/j.soilbio.2012.07.019.

Zanella A, Jabiol B, Ponge JF, Sartori G, De Waal R, Van Delft B, Graefe U, Cools N, Katzensteiner K, Hager H, Englisch M. A European morpho-functional classification of humus forms, Geoderma, 164: 138–145, 2011. doi:10.1016/j.geoderma.2011.05.016.

Ponge J, Zanella A, Sartori G, Jabiol B. Terrestrial humus forms: ecological relevance and classification, European Atlas of Soil Biodiversity, 14–15, 2010. doi:10.13140/RG.2.1.3713.5521.

Ponge JF. Humus forms in terrestrial ecosystems: A framework to biodiversity, Soil Biology and Biochemistry, 35: 935–945, 2003. doi:10.1016/S0038-0717(03)00149-4.

Cavelier J, Tobler A. The effect of abandoned plantations of Pinus patula and Cupressus lusitanica on soils and regeneration of a tropical montane rain forest in Colombia, Biodiversity and Conservation, 7: 335–347, 1998. doi:10.1023/A:1008829728564.

Loaiza-Usuga JC, León-Peláez JD, González-Hernández MI, Gallardo-Lancho JF, Osorio-Vega W,Correa-Londoño G. Alterations in litter decomposition patterns in tropical montane forests of Colombia: a comparison of oak forests and coniferous plantations, Canadian Journal of Forest Research, 43: 528–533, 2013. doi:10.1139/cjfr-2012-0438.

Ramírez JA, León-Peláez JD, Craven D, Herrera DA, Zapata CM, González-Hernández MI, Gallardo-Lancho J, Osorio W. Effects on nutrient cycling of conifer restoration in a degraded tropical montane forest, Plant and Soil, 378: 215–226, 2014. doi:10.1007/s11104-014-2024-x.

León JD, González MI, Gallardo JF. Ciclos biogeoquímicos en bosques naturales y plantaciones de coníferas en ecosistemas de alta montaña de Colombia, Revista de Biologia Tropical, 59: 1883–1894, 2011.

Vera M, Sierra M, Díez M, Sierra C, Martínez A, Martínez FJ, Aguilar J. Deforestation and land use effects on micromorphological and fertility changes in acidic rainforest soils in Venezuelan Andes, Soil and Tillage Research, 97: 184–194, 2007. doi:10.1016/j.still.2007.09.015.

Eclesia RP, Jobbagy EG, Jackson RB, Biganzoli F, Piñeiro G. Shifts in soil organic carbon for plantation and pasture establishment in native forests and grasslands of South America, Global Change Biology, 18: 3237–3251, 2012. doi:10.1111/j.1365-2486.2012.02761.x.

Drewnik M. The effect of environmental conditions on the decomposition rate of cellulose in mountain soils, Geoderma, 132: 116–130, 2006. doi:10.1016/j.geoderma.2005.04.023.

Goebel MO, Bachmann J, Woche SK, Fischer WR. Soil wettability, aggregate stability, and the decomposition of soil organic matter, Geoderma, 128: 80–93, 2005. doi:10.1016/j.geoderma.2004.12.016.

Couteaux M, Sarmiento L, Bottner P, Acevedo D,Thiery J. Decomposition of standar plant material along an altitudinal transect (65 - 3964 m) in the tropical andes, Soil Biology and Biochemistry, 34: 69–78, 2002.

Haynes RJ. Nature of the Belowground Ecosystem and Its Development during Pedogenesis, in: Advances in Agronomy, Elsevier, 2014: pp. 43–109. doi:10.1016/B978-0-12-800131-8.00002-9.

Bardgett RD. The biology of soil : a community and ecosystem approach, Oxford university press, New York USA 2005. doi:10.1093/acprof:oso/9780198525035.001.0001.

Handa IT, Aerts R, Berendse F, Berg MP, Bruder A, Butenschoen O, Chauvet E, Gessner MO, Jabiol J, Makkonen M, McKie BG, Malmqvist B, Peeters ETHM, Scheu S, Schmid B, Van Ruijven J, Vos VCA, Hättenschwiler S. Consequences of biodiversity loss for litter decomposition across biomes, Nature, 509: 218–21, 2014. doi:10.1038/nature13247.

Brose U, Scheu S. Into darkness: unravelling the structure of soil food webs, Oikos, 123: 1153–1156, 2014. doi:10.1111/oik.01768.

Wardle DA, Yeates GW, Barker GM, Bonner KI. The influence of plant litter diversity on decomposer abundance and diversity, Soil Biology and Biochemistry, 38: 1052–1062, 2006. doi:10.1016/j.soilbio.2005.09.003.

Lavelle P, Faunal activities and soil processes: adaptative strategy that determine ecosystem function, 1997. doi:10.1016/S0065-2504(08)60007-0.

Wickings K, Grandy AS, Reed SC, Cleveland CC. The origin of litter chemical complexity during decomposition, Ecology Letters, 15: 1180–1188, 2012. doi:10.1111/j.1461-0248.2012.01837.x.

Wickings K, Grandy AS. Management intensity interacts with litter chemistry and climate to drive temporal patterns in arthropod communities during decomposition, Pedobiologia, 56: 105–112, 2013. doi:10.1016/j.pedobi.2013.01.001.

Wickings K, Grandy AS, Reed S, Cleveland C. Management intensity alters decomposition via biological pathways, Biogeochemistry, 104: 365–379, 2011. doi:10.1007/s10533-010-9510-x.

Kibblewhite MG, Ritz K, Swift MJ. Soil health in agricultural systems., Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 363: 685–701, 2008. doi:10.1098/rstb.2007.2178.

Moreira FM. Manual de biología de suelos tropicales, Earthscan, Coyoacan Mexico 2012.

Wall DH, Bardgett RD, Behan-Pelletier V, Herrick JE, Jones TH, Six J, Strong DR. Soil ecology and ecosystem services, Oxford, New York USA 2012.

Wardle DA. Communities and ecosystems–linking the aboveground and belowground components. Princeton University, New Jersey, USA 2002.

De Deyn GB, Van Ruijven J, Raaijmakers CE, De Ruiter PC, Van Der Putten WH. Above- and belowground insect herbivores differentially affect soil nematode communities in species-rich plant communities, Oikos, 116: 923–930, 2007. doi:10.1111/j.2007.0030-1299.15761x.

Carbajo V, den Braber B, van der Putten WH, De Deyn GB. Enhancement of late successional plants on ex-arable land by soil inoculations, PLoS ONE, 6: 2011. doi:10.1371/journal.pone.0021943.

De Deyn GB, Raaijmakers CE, Zoomer HR, Berg MP, De Ruiter PC, Verhoef HA, Bezemer TM, Van der Putten WH. Soil invertebrate fauna enhances grassland succession and diversity., Nature, 422: 711–713, 2003. doi:10.1038/nature01548.

Rousseau L, Fonte SJ, Téllez O, van der Hoek R, Lavelle P. Soil macrofauna as indicators of soil quality and land use impacts in smallholder agroecosystems of western Nicaragua, Ecological Indicators, 27: 71–82, 2013. doi:10.1016/j.ecolind.2012.11.020.

Cluzeau D, Guernion M, Chaussod R, Martin-Laurent F, Villenave C, Cortet J, Ruiz-Camacho N, Pernin C, Mateille T, Philippot L, Bellido A, Rougé L, Arrouays D, Bispo A, Pérès G. Integration of biodiversity in soil quality monitoring: Baselines for microbial and soil fauna parameters for different land-use types, European Journal of Soil Biology, 49: 63–72, 2012. doi:10.1016/j.ejsobi.2011.11.003.

Paquin P, Coderre D. Deforestation and fire impact on edaphic insect larvae and other macroarthropods, Environmental Entomology, 26: 21–30, 1997.

Hedlund K, Griffiths B, Christensen S, Scheu S, Setälä H, Tscharntke T,Verhoef H. Trophic interactions in changing landscapes: Responses of soil food webs, Basic and Applied Ecology, 5: 495–503, 2004. doi:10.1016/j.baae.2004.09.002.

Frouz J, Prach K, Pižl V, Háněl L, Starý J, Tajovský K, Materna J, Balík V, Kalčík J, Řehounková K. Interactions between soil development, vegetation and soil fauna during spontaneous succession in post mining sites, European Journal of Soil Biology, 44: 109–121, 2008. doi:10.1016/j.ejsobi.2007.09.002.

Frouz J, Thébault E, Pižl V, Adl S, Cajthaml T, Baldrián P, Háněl L, Starý J, Tajovský K, Materna J, Nováková A, De Ruiter PC. Soil Food Web Changes during Spontaneous Succession at Post Mining Sites: A Possible Ecosystem Engineering Effect on Food Web Organization?, PLoS ONE, 8: e79694, 2013. doi:10.1371/journal.pone.0079694.

Meloni F, Varanda EM. Litter and soil arthropod colonization in reforested semi-deciduous seasonal Atlantic forests, Restoration Ecology, 23: 690–697, 2015. doi:10.1111/rec.12236.

Van der Putten WH, Bardgett RD, de Ruiter PC, Hol WHG, Meyer KM, Bezemer TM, Bradford M,A, Christensen S, Eppinga M,B, Fukami T, Hemerik L, Molofsky J, Schädler M, Scherber C, Strauss S,Y, Vos M, Wardle DA. Empirical and theoretical challenges in aboveground–belowground ecology, Oecologia, 161: 1–14, 2009. doi:10.1007/s00442-009-1351-8.

Kostenko O, van de Voorde T,F,J, Mulder PPJ, Van der Putten WH, Martijn Bezemer T. Legacy effects of aboveground-belowground interactions, Ecology Letters, 15: 813–821, 2012. doi:10.1111/j.1461-0248.2012.01801.x.

Kardol P, Wardle DA. How understanding aboveground-belowground linkages can assist restoration ecology, Trends in Ecology and Evolution, 25: 670–679, 2010. doi:10.1016/j.tree.2010.09.001.

Stanturf JA, Palik BJ, Dumroese RK. Contemporary forest restoration: A review emphasizing function, Forest Ecology and Management, 331: 292–323, 2014. doi:10.1016/j.foreco.2014.07.029.

Camero É, Diaz JE, Salinas A. Estudio de la artropofauna asociada a suelos de dos tipos de ecosistemas en la cuenca del río cauca - colombia, Acta Biologica Colombiana, 10: 35–44, 2005.

Ruiz-Cobo DH, Feijoo A, Rodriguez C. Comunidades De Macroinvertebrados Edáficos En Diferentes Sistemas De Uso Del Terreno En La Cuenca Del Río Otún, Colombia, Acta Zoologica Mexicana, numero esp: 165–178, 2010.

Kattan GH, Correa D, Escobar F, Medina C. Leaf-litter arthropods in restored forests in the Colombian Andes: A comparison between secondary forest and tree plantations, Restoration Ecology, 14: 95–102, 2006. doi:10.1111/j.1526-100X.2006.00109.x.

Cerón P, Montenegro S, Noguera E. Macrofauna En Suelos De Bosque Y Pajonal De La Reserva Natural Pueblo Viejo, Nariño, Colombia, Revista de La Academia Colombiana de Ciencias Exactas, Físicas Y Naturales, 32: 447–453, 2008. http://www.accefyn.org.co/revista/Vol_32/125/447-453.pdf.

Feijoo A, Quintero H, Fragoso CE. Earthworm communities in forest and pastures of the Colombian Andes, Caribbean Journal of Science, 42: 301–310, 2006.

Feijoo A, Lavelle P. Relationships between land use and the earthworm communities in the basin of La Vieja river , Colombia, Pastos Y Forrajes, 30: 235–249, 2015.

Feijoo A, Carvajal AF, Zúñiga MC, Quintero H, Fragoso C. Diversity and abundance of earthworms in land use systems in central-western Colombia, Pedobiologia, 54: S69–S75, 2011. doi:10.1016/j.pedobi.2011.09.016.

Feijoo AM, Knapp EB, Lavelle P, Moreno AG. Quantifying soil macrofauna in a Colombian watershed, Pedobiologia, 43: 513–517, 1999. isi:000084831700005.

León-gamboa AL, Ramos C, García MR. Efecto de plantaciones de pino en la artropofauna del suelo de un bosque Altoandino, Revista de Biologia Tropical, 58: 1031–1048, 2010.

USDA. Soil Taxonomy, Geological Magazine, 114: 492, 1999. doi:10.1017/S0016756800045489.

Bockheim JG, Gennadiyev AN, Hartemink AE, Brevik EC. Soil-forming factors and Soil Taxonomy, Geoderma, 226–227: 231–237, 2014.

Kotschwar A .Plan de manejo de la Cuenca del embalse de Neusa. Corporación auntónoma de la Sabana de Bogotá y de los Valles de Ubaté y Chiquinquirá. Bogotá, Colombia, 1980.

Ponge JF, Chevalier R. Humus Index as an indicator of forest stand and soil properties, Forest Ecology and Management, 233: 165–175, 2006. doi:10.1016/j.foreco.2006.06.022.

Ponge JF. Humus and time : a love story, Hal, 2010. doi:10.13140/RG.2.1.1354.2561.

Anderson J, Ingram J. Tropical Soil Biology and Fertility: A Handbook of Methods, Oxfordshire: CAB international, United Kingdom, 1993.

Carvazos T. Manual de prácticas de física de suelos, Trillas, Mexico D.F, 1992.

Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MH, Wagner H. Package “vegan,” R Package Ver. 2.0–8, 254, 2013. doi:10.4135/9781412971874.n145.

Dufrene M, Legendre P. Species Assemblages and Indicator Species: the need for a flexible asymetrical approach, Ecological Monographs, 67: 345–366, 1997.

Roberts DW. Ordination and Multivariate Analysis for Ecology, 21–51, 2016. https://cran.r-project.org/web/packages/labdsv/labdsv.pdf.

Mumme S, Jochum M, Brose U, Haneda NF, Barnes AD. Functional diversity and stability of litter-invertebrate communities following land-use change in Sumatra, Indonesia, Biological Conservation, 191: 750–758, 2015. doi:10.1016/j.biocon.2015.08.033.

Chessel D, Dufour AB, Thioulouse J. The ade4 package - I : One-table methods, R News, 4: 5–10, 2004. doi:10.2307/3780087.

R Development Core Team, R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, 2016. http://www.r-project.org.

Villani MG, Allee LL, Díaz A, Robbins PS. Adaptive strategies of edaphic arthropods, Annual Review of Entomology, 44: 233–256, 1999. doi:10.1146/annurev.ento.44.1.233.

Schowalter TD. Insect Responses to Major Landscape-Level Disturbance, Annual Review of Entomology, 57: 1–20, 2012. doi:10.1146/annurev-ento-120710-100610.

Neita-Moreno JC, Morón MA. Estados inmaduros de Ancognatha ustulata (Coleoptera: Melolonthidae: Dynastinae: Cyclocephalini), Revista Mexicana de Biodiversidad, 79: 355–361, 2008.

Jochum M. Using body mass, metabolism and stoichiometry to assess ecological impacts in a changing environment, Georg-August-Universität Göttingen, Göttingen, 2016.

Salmon S, Geoffroy JJ, Ponge JF. Earthworms and collembola relationships: Effects of predatory centipedes and humus forms, Soil Biology and Biochemistry, 37: 487–495, 2005. doi:10.1016/j.soilbio.2004.08.011.

Salamon JA, Wissuwa J, Jagos S, Koblmüller M, Ozinger O, Winkler C, Frank T. Plant species effects on soil macrofauna density in grassy arable fallows of different age, European Journal of Soil Biology, 47: 129–137, 2011. doi:10.1016/j.ejsobi.2011.01.004.

Ott D, Digel C, Klarner B, Maraun M, Pollierer M, Rall BC, Scheu S, Seelig G, Brose U. Litter elemental stoichiometry and biomass densities of forest soil invertebrates, Oikos, 1212–1223, 2014. doi:10.1111/oik.01670.

Golovatch S, Wytwer J. the South American Millipede Genus Phaneromerium Verhoeff , 1941 , With the Description of a New Cavernicolousspecies From Brazil (Diplopoda : Polydesmida : Fuhrmannodesmidae), Annales Zoologici (Warzawa), 54: 511–514, 2004.

Feijoo A, Quintero H, Fragoso C, Moreno A. Patrón de distribución y listado de especies de las lombrices de tierra (Annelida, Oligochaeta) en colombia, Acta Zoologica Mexicana, 20: 197–220, 2004.

Grove SJ. Saproxylic Insect Ecology and the Sustainable Management of Forests, Annual Review of Ecology and Systematics, 33: 1–23, 2002. doi:10.1146/annurev.ecolsys.33.010802.150507.

Hättenschwiler S, Tiunov AV, Scheu S. Biodiversity and Litter Decomposition in Terrestrial Ecosystems, Annual Review of Ecology, Evolution, and Systematics, 36: 191–218, 2005. doi:10.1146/annurev.ecolsys.36.112904.151932.

Frouz J, Roubíčková A, Heděnec P, Tajovský K. Do soil fauna really hasten litter decomposition? A meta-analysis of enclosure studies, European Journal of Soil Biology, 68: 18–24, 2015. doi:10.1016/j.ejsobi.2015.03.002.

Zhang DQ, Hui DF, Luo YQ, Zhou GY. Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors, Journal of Plant Ecology-Uk, 1: 85–93, 2008. doi:Doi 10.1093/Jpe/Rtn002.

Eisenhauer N, Milcu A, Sabais ACW, Bessler H, Brenner J, Engels C, Klarner B, Maraun M, Partsch S, Roscher C, Schonert F, Temperton V,M, Thomisch K, Weigelt A, Weisser W,W,, Scheu S. Plant diversity surpasses plant functional groups and plant productivity as driver of soil biota in the long term, PLoS ONE, 6: 15–18, 2011. doi:10.1371/journal.pone.0016055.

Bezemer TM, Fountain MT, Barea JM, Christensen S, Dekker SC, Duyts H, Van Hal R, Harvey JA, Maraun M, Mikola J, Mladenov AG, Robin C, De Ruiter PC, Scheu S, Setälä H, Smilauer P, Van der Putten WH. Divergent composition but similar function of soil food webs beneath individual plants: plant species and community effects, Ecology, 91: 3027–3036, 2010. doi:10.1890/09-2198.1.

Ruiz-Cobo DH, Bueno-Villegas J. Land use and alpha, beta, and gamma diversity of Diplopoda in the Otún basin Colombia, Universitas scientiarum, 2010. http://revistas.javeriana.edu.co/index.php/scientarium/article/viewArticle/1379.

Del Río MG, Malvardi AE, Lanteri A. Systematics and cladistics of a new naupactini genus (Coleoptera: Curculionidae: Entiminae) from the Andes of Colombia and Ecuador, Zoological Journal of the Linnean Society, 166: 54–71, 2012. doi:10.1111/j.1096-3642.2012.00833.x.

Lanteri A, Guedes J,Parra J. Weevils injurious for roots of citrus in São Paulo State, Brazil, Neotropical Entomology, 561–569, 2002. doi:10.1590/S1519-566X2002000400008.

Aguirre-Tapiero MDP. Clave De Identificación De Géneros Conocidos Y Esperados De Elateridae Leach (Coleoptera: Elateroidea) En Colombia, Boletín Del Museo de Entomología de La Universidad Del Valle, 10: 25–35, 2009. http://entomologia.univalle.edu.co/boletin/4Aguirre.pdf.

Decaëns T, Mariani L, Lavelle P. Soil surface macrofaunal communities associated with earthworm casts in grasslands of the Eastern Plains of Colombia, Applied Soil Ecology, 13: 87–100, 1999. doi:10.1016/S0929-1393(99)00024-4.

Guzmán DeTomé ME. Clave de las especies de Conoderus Grupo II (Coleoptera: Elateridae), Revista de la Sociedad Entomologica Argentina, 64: 119–129, 2005.

Costa, FC, Capocasale RM. Lycosa carbonelli, sp . nov.; una etoespecie simpatrida,sibilina de Lycosa thorelli (Keyserling) (Araneae, Lycosidae). Journal of Arachnology, 11:423-431, 1984.

Florez E. Las arañas del departamento del Valle del Cauca: Un manual introductorio a su diversidad y clasificación. 1996. doi:10.4067/S0071-17132000003500023.

Kuu A, Ivask M. Distribution of Octolasion cyaneum ( Savigny , 1826 ) in Estonia 1993 – 2008, Zoology in the Middle East, 37–41, 2013.

Terhivuo J, Saura A. Dispersal and clonal diversity of north-european parthenogenetic earthworms, Biological Invasions, 5–18, 2006. doi:10.1007/978-1-4020-5429-7_2.

Tilman D, Isbell F, Cowles JM. Biodiversity and Ecosystem Functioning, Annual Review of Ecology, Evolution, and Systematics, 45: 471–493, 2014. doi:10.1146/annurev-ecolsys-120213-091917.

Sylvain ZA, Wall DH. Linking soil biodiversity and vegetation: Implications for a changing planet, American Journal of Botany, 98: 517–527, 2011. doi:10.3732/ajb.1000305.

Paul E,A, . The nature and dynamics of soil organic matter: Plant inputs, microbial transformations, and organic matter stabilization, Soil Biology and Biochemistry, 98: 109–126, 2016.

Ditzler CA, Tugel AJ. Soil quality field tools: Experiences of USDA-NCRS Soil Quality Institute of Agronomy Journal, 2002.

Costantini EAC, Branquinho C, Nunes A, Schwilch G, Stavi I, Valdecantos A, Zucca C. Soil indicators to assess the effectiveness of restoration strategies in dryland ecosystems, Solid Earth, 7: 397–414, 2016. doi:10.5194/se-7-397-2016.

Chacón G, Gagnon D, Paré D. Comparison of soil properties of native forests, Pinus patula plantations and adjacent pastures in the Andean highlands of southern Ecuador: Land use history or recent vegetation effects?, Soil Use and Management, 25: 427–433, 2009. doi:10.1111/j.1475-2743.2009.00233.x.

Hembree DI. Neoichnology of burrowing millipedes: Linking modern burrow morphology, organism behavior, and sediment properties to interpret continental ichnofossils, Palaios, 24: 425–439, 2009. doi:10.2110/palo.2008.p08-098r.

Minelli A, The Myriapoda Treatise on Zoology - Anatomy, Taxonomy, Biology, Volumen 1, Brill, Leiden - Boston, 2011. doi:10.1163/9789004188266.

Adis J. Amazonian Arachnida and Myriapoda, Pensoft Publishers, Sofia-Moscow, 2002.

Gerold G. Soil, climate and vegetation of tropical montane forests – a case study from the Yungas, Bolivia, in: R. Gradstein, J. Homeier, D. Gansert, Göttingen, Georg-August-Universität, 2008.

Homeier J, Leuschner C, Bräuning A, Cumbicus NL, Hertel D, Martinson GO, Spannl S, Veldkamp E. Ecosystem Services, Biodiversity and Environmental Change in a Tropical Mountain Ecosystem of South Ecuador, Springer-Verlag, Berlin Heidelberg, 2013. doi:10.1007/978-3-642-38137-9.

Jiménez J,J,, Lal R, . Mechanisms of C Sequestration in Soils of Latin America, Critical Reviews in Plant Sciences, 25: 337–365, 2006. doi:10.1080/0735268060094240.

Fortuna A. The Soil Biota Aggregates : Model of a Pedosphere, Nature Education Knowledge 3(10):1, 2012.

Kalinkat G, Jochum M, Brose U, Dell AI. Body size and the behavioral ecology of insects: linking individuals to ecological communities, Current Opinion in Insect Science, 9: 24–30, 2015. doi:10.1016/j.cois.2015.04.017.

de Lima SS, de Aquino AM, Leite LFC, Velásquez E, Lavelle P. Relação entre macrofauna edáfica e atributos químicos do solo em diferentes agroecossistemas, Pesquisa Agropecuaria Brasileira, 45: 322–331, 2010. doi:10.1590/S0100-204X2010000300013.

Ponge JF. Heterogeneity in soil animal communities and the development of humus forms, Going Underground, Ecological Studies in Forest Soils, 33–44, 1999. doi:10.13140/2.1.4441.0563.

Jobbágy EG, Jackson RB. The vertical distribution of soil organic carbon and its relation to climate and vegetation, Ecological Applications, 10: 423–436, 2000. doi:10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2.

Tonneijck FH, Jongmans AG. The influence of bioturbation on the vertical distribution of soil organic matter in volcanic ash soils: A case study in northern Ecuador, European Journal of Soil Science, 59: 1063–1075, 2008. doi:10.1111/j.1365-2389.2008.01061.x.

Gunaratne AMT, Gunatilleke CVS, Gunatilleke IA, Madawala HMSP, Burslem DFRP. Overcoming ecological barriers to tropical lower montane forest succession on anthropogenic grasslands: Synthesis and future prospects, Forest Ecology and Management, 329: 340–350, 2014. doi:10.1016/j.foreco.2014.03.035.

Tonneijck FH, Jansen B, Nierop KGJ, Verstraten JM, Sevink J, De Lange L. Towards understanding of carbon stocks and stabilization in volcanic ash soils in natural Andean ecosystems of northern Ecuador, European Journal of Soil Science, 61: 392–405, 2010. doi:10.1111/j.1365-2389.2010.01241.x.

Barnes AD, Jochum M, Mumme S, Haneda NF, Farajallah A, Widarto TH, Brose U. Consequences of tropical land use for multitrophic biodiversity and ecosystem functioning, Nature Communications, 5: 1–7, 2014. doi:10.1038/ncomms6351.

Univ. Sci. is registered under a Creative Commons Attribution 4.0 International Public License. Thus, this work may be reproduced, distributed, and publicly shared in digital format, as long as the names of the authors and Pontificia Universidad Javeriana are acknowledged. Others are allowed to quote, adapt, transform, auto-archive, republish, and create based on this material, for any purpose (even commercial ones), provided the authorship is duly acknowledged, a link to the original work is provided, and it is specified if changes have been made. Pontificia Universidad Javeriana does not hold the rights of published works and the authors are solely responsible for the contents of their works; they keep the moral, intellectual, privacy, and publicity rights. Approving the intervention of the work (review, copy-editing, translation, layout) and the following outreach, are granted through an use license and not through an assignment of rights. This means the journal and Pontificia Universidad Javeriana cannot be held responsible for any ethical malpractice by the authors. As a consequence of the protection granted by the use license, the journal is not required to publish recantations or modify information already published, unless the errata stems from the editorial management process. Publishing contents in this journal does not generate royalties for contributors.