Changes in Short Term Hippocampal Plasticity caused by a Peptide Designed and Synthesized based on the Structure of a Conotoxine
PDF (Spanish)

Keywords

Conotoxins
toxinology
hippocampus

How to Cite

Changes in Short Term Hippocampal Plasticity caused by a Peptide Designed and Synthesized based on the Structure of a Conotoxine. (2012). Universitas Medica, 54(1), 10-25. https://doi.org/10.11144/Javeriana.umed54-1.mphc
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar

Abstract

Introduction: Designing bio-inspired devices or molecules has been a longstanding method supporting multiple advances in science and technology.

Objective: To test the potential effect of intraperitoneal administration of the bio-inspired peptide on short-term plasticity.

Materials and methods: Male rats in two groups (peptide treated and control) were used for registration of hippocampal field potentials from CA1, after paired stimuli in CA3 contra lateral area.

Results: Amplitude and slope of field potentials’, both before and after peptide administration, showed no changes in systemic factors (temperature and heart rate), but statistical significance in short term plasticity in small inter stimuli interval (40 to 80 ms).

Conclusion: The current research shows effects on paired pulse facilitation caused by peptide treatment, specifically on inter stimuli interval shorter.

PDF (Spanish)

Tang YP, Shimizu E, Dube GR, Rampon C, Kerchner GA, Zhuo M et al. Genetic enhancement of learning and memory in mice. Nature. 1999;401:63-9.

Petrenko AB, Yamakura T, Baba H, Shimoji K. The role of N-methyl-D-aspartate (NMDA) receptors in pain: a review. Anesth Analg. 2003;97:1108-16.

South SM, Kohno T, Kaspar BK, Hegarty D, Vissel B, Drake CT et al. A conditional deletion of the NR1 subunit of the NMDA receptor in adult spinal cord dorsal horn reduces NMDA currents and injury-induced pain. J Neurosci. 2003;23:5031-40.

Inturrisi CE. The role of N-methyl-Daspartate (NMDA) receptors in pain and morphine tolerance. Minerva Anestesiol. 2005;71:401-3.

Hingne PM, Sluka KA. Blockade of NMDA receptors prevents analgesic tolerance to repeated transcutaneous electrical nerve stimulation (TENS) in rats. J Pain. 2008;9:217-25.

Nazarian A, Gu G, Gracias NG, Wilkinson K, Hua XY, Vasko MR et al.

Spinal N-methyl-D-aspartate receptors and nociception-evoked release of primary afferent substance P. Neuroscience. 2008;152:119-27.

Tandon OP, Mehta AK, Halder S, Khanna N, Sharma KK. Peripheral interaction of opioid and NMDA receptors in inflammatory pain in rats. Indian J Physiol Pharmacol. 2010;54:21-31.

Alexander JK, DeVries AC, Kigerl KA, Dahlman JM, Popovich PG. Stress exacerbates neuropathic pain via glucocorticoid and NMDA receptor activation. Brain Behav Immun. 2009;23:851-60.

Jung YH, Suh YH. Differential functions of NR2A and NR2B in short-term and long-term memory in rats. Neuroreport. 2010;21:808-11.

Wang D, Cui Z, Zeng Q, Kuang H, Wang LP, Tsien JZ et al. Genetic enhancement of memory and long-term potentiation but

not CA1 long-term depression in NR2B transgenic rats. PLoS One. 2009;4:e7486.

von EJ, Doganci B, Jensen V, Hvalby O, Gongrich C, Taylor A et al. Contribution of hippocampal and extra-hippocampal NR2B-containing NMDA receptors to performance on spatial learning tasks. Neuron. 2008;60:846-60.

Hu M, Sun YJ, Zhou QG, Chen L, Hu Y, Luo CX et al. Negative regulation of neurogenesis and spatial memory by NR2B-containing NMDA receptors. J Neurochem. 2008;106:1900-13.

Jiao J, Nakajima A, Janssen WG, Bindokas VP, Xiong X, Morrison JH et al. Expression of NR2B in cerebellar granule cells specifically facilitates effect of motor training on motor learning. PLoS One. 2008;3:e1684.

Cao X, Cui Z, Feng R, Tang YP, Qin Z, Mei B et al. Maintenance of superior learning and memory function in NR2B transgenic mice during ageing. Eur J Neurosci. 2007;25:1815-22.

Zhao MG, Toyoda H, Lee YS, Wu LJ, Ko SW, Zhang XH et al. Roles of NMDA NR2B subtype receptor in prefrontal long-term potentiation and contextual fear memory. Neuron. 2005;47:859-72.

Loftis JM, Janowsky A. The N-methyl-Daspartate receptor subunit NR2B: localization, functional properties, regulation, and clinical implications. Pharmacol Ther. 2003;97:55-85.

Oyuela R, Lareo L, Muñoz L, Morales L, Echeverry S, Uribe A et al. Efecto en el aprendizaje y la memoria espacial de un péptido sintético en ratas: estudio preliminar. Psicología desde el Caribe. 2004;13:1-14.

Tzingounis AV, Nicoll RA. Presynaptic NMDA receptors get into the act. Nat Neurosci. 2004;7:419-20.

Mukhamedyarov MA, Zefirov AL, Palotas A. Paired-pulse facilitation of transmitter release at different levels of extracellular calcium concentration. Neurochem Res. 2006;31:1055-58.

Craig S, Commins S. Interaction between paired-pulse facilitation and long-term potentiation in the projection from hippocampal area CA1 to the entorhinal cortex. Neurosci Res. 2005;53:140-6.

Riveros A. Registros in vivo de la facilitación por pulsos pareados y la potenciación a largo plazo en la región CA1 de la rata: descripción y prueba de una técnica para la evaluación de la plasticidad sináptica. Revista MED. 2005;13:75-85.

Akopian G, Walsh JP. Corticostriatal paired-pulse potentiation produced by voltage-dependent activation of NMDA receptors and L-type Ca(2+) channels. J Neurophysiol. 2002;87:157-65.

Mukhamedyarov MA, Grishin SN, Zefirov AL, Palotas A. The mechanisms of multi-component paired-pulse facilitation of neurotransmitter release at the frog neuromuscular junction. Pflugers Arch. 2009;458:563-70.

Kim J, Alger BE. Random response fluctuations lead to spurious paired-pulse facilitation. J Neurosci. 2001;21:9608-18.

Leung LS, Peloquin P, Canning KJ. Paired- pulse depression of excitatory postsynaptic current sinks in hippocampal CA1 in vivo. Hippocampus. 2008;18:1008-20.

Scullin CS, Wilson MC, Partridge LD. Developmental changes in presynaptic Ca(2 +) clearance kinetics and synaptic plasticity in mouse Schaffer collateral terminals. Eur J Neurosci. 2010;31:817-26.

Rusakov DA. Ca2+-dependent mechanisms of presynaptic control at central synapses. Neuroscientist. 2006;12:317-26.

Catterall WA, Few AP. Calcium channel regulation and presynaptic plasticity. Neuron. 2008;59:882-901.

Luccini E, Musante V, Neri E, Raiteri M, Pittaluga A. N-methyl-D-aspartate autoreceptors respond to low and high agonist concentrations by facilitating, respectively, exocytosis and carrier-mediated release of glutamate in rat hippocampus. J Neurosci Res. 2007;85:3657-65.

Bardoni R, Torsney C, Tong CK, Prandini M, MacDermott AB. Presynaptic NMDA receptors modulate glutamate release from primary sensory neurons in rat spinal cord dorsal horn. J Neurosci. 2004;24:2774-81.

Duguid IC, Smart TG. Retrograde activation of presynaptic NMDA receptors enhances GABA release at cerebellar interneuron-Purkinje cell synapses. Nat Neurosci. 2004;7:525-33.

Tzingounis AV, Nicoll RA. Presynaptic NMDA receptors get into the act. Nat Neurosci. 2004;7:419-20.

Buonanno A. Presynaptic NMDA receptors also make the switch. Nat Neurosci. 2011;14:274-6.

McGuinness L, Taylor C, Taylor RD, Yau C, Langenhan T, Hart ML et al. Presynaptic NMDARs in the hippocampus facilitate transmitter release at theta frequency. Neuron. 2010;68:1109-27.

Decker H, Jurgensen S, Adrover MF, Brito-Moreira J, Bomfim TR, Klein WL et al. N-methyl-D-aspartate receptors are required for synaptic targeting of Alzheimer’s toxic amyloid-beta peptide oligomers. J Neurochem. 2010;115:1520-9.

Kurup P, Zhang Y, Xu J, Venkitaramani DV, Haroutunian V, Greengard P et al. Abeta-mediated NMDA receptor endocytosis

in Alzheimer’s disease involves ubiquitination of the tyrosine phosphatase STEP61. J Neurosci. 2010;30:5948-57.

Cranwell-Bruce LA. Drugs for Alzheimer’s disease. Medsurg Nurs. 2010;19:51-3.

Koutsilieri E, Riederer P. Excitotoxicity and new antiglutamatergic strategies in Parkinson’s disease and Alzheimer’s disease. Parkinsonism Relat Disord. 2007;13 Suppl 3:S329-S331.

This journal is registered under a Creative Commons Attribution 4.0 International Public License. Thus, this work may be reproduced, distributed, and publicly shared in digital format, as long as the names of the authors and Pontificia Universidad Javeriana are acknowledged. Others are allowed to quote, adapt, transform, auto-archive, republish, and create based on this material, for any purpose (even commercial ones), provided the authorship is duly acknowledged, a link to the original work is provided, and it is specified if changes have been made. Pontificia Universidad Javeriana does not hold the rights of published works and the authors are solely responsible for the contents of their works; they keep the moral, intellectual, privacy, and publicity rights.

Approving the intervention of the work (review, copy-editing, translation, layout) and the following outreach, are granted through an use license and not through an assignment of rights. This means the journal and Pontificia Universidad Javeriana cannot be held responsible for any ethical malpractice by the authors. As a consequence of the protection granted by the use license, the journal is not required to publish recantations or modify information already published, unless the errata stems from the editorial management process. Publishing contents in this journal does not generate royalties for contributors.