Technical efficiency analysis of the local management units of the National Institute of Social Services for Retirees and Pensioners in Argentina
HTML Full Text (Spanish)
PDF (Spanish)
XML (Spanish)

Keywords

INSSJyP
Data enveloped analysis
technical efficiency

How to Cite

Technical efficiency analysis of the local management units of the National Institute of Social Services for Retirees and Pensioners in Argentina. (2020). Gerencia Y Políticas De Salud, 19, 1-17. https://doi.org/10.11144/Javeriana.rgps19.aetu
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar

Abstract

 Objective: To determine which Local Management Units (UGL) of the National Institute of Social Services for Retirees and Pensioners (INSSJyP) perform with technical and/or scale inefficiency, as well as identify the reference UGLs to which each of the inefficient units should imitate. Methods: The technical and scale efficiency of the UGLs was estimated, using a data enveloped analysis with variable returns that includes 3 inputs (number of physicians, number of vaccination points and number of nursing homes) and 4 outputs (number of consultations, number of prescriptions, number of vaccinated against influenza and number of hospitalized in nursing homes). This information was obtained through open data from the INSSJyP. Results: It was found 14 units with full efficiency, 6 units with technical efficiency and 18 inefficient units. For each of the latter, the efficient reference unit was identified. The inefficient ones should imitate the reference unit by reducing the number of inputs between 2.55 and 54.88%, and/or increasing the number of outputs up to 204.3%. Conclusions: 47% of UGLs works with technical and scale inefficiency. By modifying the number of inputs and/or increasing the number of outputs, they could reach the efficiency frontier. Nonetheless, it would be advisable to explore whether factors such as the type of contract with health service providers and population density could be causing such inefficiency.

 

HTML Full Text (Spanish)
PDF (Spanish)
XML (Spanish)

1. Ley 19.032. Boletín Oficial de la República Argentina N° 22.184, 28 de mayo de 1971. Buenos Aires: República Argentina.

2. Lloyd-Sherlock P. Financing health services for pensioners in Argentina: A salutary tale. Int J Soc Welfare. 2003;12: 24-30. https://doi.org/10.1111/1468-2397.00008C

3. Instituto Nacional de Servicios Sociales para Jubilados y Pensionados. Datos abiertos; 2019. Disponible en: https://datos.pami.org.ar/

4. Ley 22.245. Boletín Oficial de la República Argentina N° 24.451, 3 de julio de 1980. Buenos Aires: República Argentina.

5. Golbert L. El envejecimiento de la población y la seguridad social. Boletín informativo Techint N° 251; 1988.

6. Decreto 1508/91. Boletín Oficial de la República Argentina N° 27.195, 12 de agosto de 1991. Buenos Aires: República Argentina.

7. Martín JJ, López del Amo MP. La medida de la eficiencia en las organizaciones sanitarias. Presupuesto y gasto público. 2007;49(2007): 139-161. https://www.ief.es/docs/destacados/publicaciones/revistas/pgp/49_medidaEficiencia.pdf

8. Herrera P, Francke P. Análisis de la eficiencia del gasto municipal y de sus determinantes. Economía. 2009;32(63): 115-121. https://www.researchgate.net/publication/46532022_Analisis_de_la_eficiencia_del_gasto_municipal_y_de_sus_determinantes

9. Cooper W, Seiford L, Zhu J. Data envelopment analysis: History, models, and interpretations. In: Handbook on data envelopment analysis. Boston, MA: Springer; 2011. p.1-39.

10. Ozcan Y, Cotter J. An assessment of efficiency of area agencies on aging in Virginia through data envelopment analysis. Gerontologist. 1994;34(3): 363-370. https://doi-org.eres.qnl.qa/10.1093/geront/34.3.363.

11. Borge L, Haraldsvik M. Efficiency potential and determinants of efficiency: an analysis of the care for the elderly sector in Norway. Internat Tax Public Financ. 2009;16(4): 468-486. https://doi.org/10.1007/s10797-009-9110-7

12. Iparraguirre JL, Ma R. Efficiency in the provision of social care for older people. A three-stage data envelopment analysis using self-reported quality of life. Socio-Econ Plan Sci. 2015;49: 33-46. https://doi.org/10.1016/j.seps.2014.10.001

13. Hsiao S, Hsiao L. Application of Data Envelopment analysis to evaluating elderly social welfare performance. Revista de Cercetare si Interventie Sociala. 2015;48: 69-82. https://www.rcis.ro/images/documente/rcis48_07.pdf

14. Björkgren MA, Häkkinen U, Linna M. Measuring efficiency of long-term care units in Finland. Health Care Manag Sci. 2001;4(3): 193-200. https://link.springer.com/article/10.1023/A:1011444815466

15. Wang YH, Chou LF. The efficiency of nursing homes in Taiwan: An empirical study using data envelopment analysis. Fu Jen Manag Rev (輔仁管理評論). 2005;12(1): 167-194. http://www.airitilibrary.com/Publication/alPublicationJournal?PublicationID=10254412

16. DeLellis NO, Ozcan YA. Quality outcomes among efficient and inefficient nursing homes: A national study. Health Care Manag Rev. 2013;38(2): 156-165. https://doi.org/10.1097/hmr.0b013e31824bec38

17. Carreras M., García LI. La eficiencia de las residencias de mayores: Propuesta de medición y resultados en la provincia de Zaragoza. Atlantic Rev Econ. 2016;1: 3-28. https://zaguan.unizar.es/record/64505/files/texto_completo.pdf

18. Luasa SN, Dineen D, Zieba M. Technical and scale efficiency in public and private Irish nursing homes–a bootstrap DEA approach. Health Care Manag Sci. 2018;21(3): 326-347. https://link.springer.com/article/10.1007/s10729-016-9389-8

19. Kooreman P. Nursing home care in The Netherlands: a nonparametric efficiency analysis. J Health Econ. 1994;13(3): 301-316. https://doi.org/10.1016/0167-6296(94)90029-9

20. Garavaglia G, Lettieri E, Agasisti T, Lopez S. Efficiency and quality of care in nursing homes: an Italian case study. Health Care Manag Sci. 2011;14(1): 22-35. https://link.springer.com/article/10.1007/s10729-010-9139-2

21. Banker R, Charnes A, Cooper W. Some models for estimating technical and scale inefficiencies in Data Envelopment Analysis. Manage Sci. 1984;30(9): 1078-1092. https://doi.org/10.1287/mnsc.30.9.1078

22. Cooper W, Seiford L, Tone K. Data envelopment analysis: a comprehensive text with models, applications, references and DEA-solver software. 2nd ed. Springer, New York: Sage Publications; 2007.

23. Sarriá A, Timoner, J. Determinantes de la vacunación de la gripe en personas mayores de 65 años. Revista española de salud pública. 2002;76: 17-26. https://www.scielosp.org/article/resp/2002.v76n1/17-26/

24. Ministerio de Desarrollo Social, Secretaría de niñez, adolescencia y familia. Dirección Nacional de Políticas para el Adulto Mayor. (2006) Informe sobre la situación, necesidades y demandas de las personas mayores. Argentina. En: OISS, Situación, necesidades y demandas de las personas mayores en los países del Cono Sur. Apuntes para un diagnóstico. Proyecto sobre personas mayores, dependencia y servicios sociales en los países del Cono Sur; 2006.

25. OISS Organización Iberoamericana de Seguridad Social. II informe del Observatorio Iberoamericano sobre adultos mayores. Programa Iberoamericano de Cooperación sobre la situación de los Adultos Mayores en la Región, 2012-2014; 2013.

26. Villarreal F, Tohmé, F. Análisis envolvente de datos. Un caso de estudio para una universidad argentina. Estudios gerenciales. 2017;33(144): 302-308. https://doi.org/10.1016/j.estger.2017.06.004

27. Coll V, Blasco O. Evaluación de la eficiencia mediante el análisis envolvente de datos; 2006. http://www.eumed.net/libros/2006c/197.

28. Tanahashi T. Health service coverage and its evaluation. Bulletin of the World Health organization. 1978;56(2): 295-303. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2395571/

29. Instituto Geográfico Nacional; 2019. Disponible en: http://www.ign.gob.ar/NuestrasActividades/Geografia/DatosArgentina/DivisionPolitica

30. Velazquez GA. Geografía y bienestar: situación local, regional y global de la argentina luego del censo de 2001. Buenos Aires: Eudeba; 2008.

31. Abramzón M. Argentina: recursos humanos en salud en 2004. Buenos Aires: Organización Panamericana de la Salud; 2005.

32. Goodridge D, Lawson J, Rennie D, Marciniuk D. Rural/urban differences in health care utilization and place of death for persons with respiratory illness in the last year of life. Rural Remote Health. 2010;10(2): 1349. https://www.ncbi.nlm.nih.gov/pubmed/20438281

33. Seidel J, Beck C, Pocobelli G, Lemaire J, Bugar J, Quan H, Ghali W. Location of residence associated with the likelihood of patient visit to the preoperative assessment clinic. BMC Health Serv Res. 2006;6(1): 13. https://doi.org/10.1186/1472-6963-6-13

34. Wellstood K, Wilson K, Eyles J. ‘Reasonable access’ to primary care: Assessing the role of individual and system characteristics. Health & Place. 2006;12(2): 121-130. https://doi.org/10.1016/j.healthplace.2004.10.010

35. Resolución N° 1.124. Boletín Oficial del Instituto de Servicios Sociales para Jubilados y Pensionados, 23 de septiembre de 2008. Buenos Aires: INSSJP.

36. Resolución N° 1.895. Boletín Oficial del Instituto de Servicios Sociales para Jubilados y Pensionados, 26 de octubre de 2016. Buenos Aires: INSSJP.

37. Resolución N° 2.408. Boletín Oficial del Instituto de Servicios Sociales para Jubilados y Pensionados, 28 de diciembre de 2016. Buenos Aires: INSSJP.
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2020 Gisela Paula González, Milva Geri, Fernanda Villareal, Juan Marcelo Virdis