Published Dec 14, 2016


Google Scholar
Search GoogleScholar

Patricia Fernández-Morales, PhD

Carlos Alberto Cano-Montoya, MSc

Jesús Alberto Pérez-Mesa, MSc

María Ángeles Navacerrada, PhD



Objetivo: se hicieron pruebas de transferencia térmica y de caída de presión para determinar los coeficientes de permeabilidad y de conductividad térmica de espumas metálicas de aluminio fabricadas mediante el proceso IPS (Infiltración de Preformas Solubles). Método: para ambas pruebas, se utilizaron muestras de espumas metálicas con 50mm de diámetro y 20mm de espesor, con tamaños de poro de 0.5, 1.0 y 2.0mm y una densidad relativa de 0.34. Para la realización de las pruebas de caída de presión, se realizó una adaptación de un sistema de flujo de fluidos y, los valores de permeabilidad se calcularon utilizando la ley de Darcy. Por otra parte, para obtener los coeficientes de conductividad se utilizó el ensayo de la caja térmica y la ley de Fourier. Resultados: se encontró que hay una influencia importante del tamaño de los poros en los valores de permeabilidad y de conductividad térmica obtenidos. Por último, los resultados se compararon con los obtenidos por otros investigadores, determinando que estos son muy consistentes con los encontrados en el presente trabajo. Conclusiones: nuestro interés es mejorar el conocimiento sobre las espumas metálicas y en este sentido, proponer la posibilidad de su uso en aplicaciones que involucran flujo de fluidos y transferencia de calor.


Aluminum, foams, permeability, thermal conductivityAluminio, espumas, permeabilidad, conductividad térmica

[1] J. Banhart, “Manufacture, characterization and application of cellular metals and metal foams”, Prog. Mater. Sci., vol. 46, pp. 559-632, 2001.
[2] M.F. Ashby, A. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson, and H.N.G. Wadley, Metal foams: a design guide, Oxford: Butterworth-Heinemann, 2000.
[3] H.P. Degischer, Handbook of Cellular Materials - Production, Processing, Applications, Eds. H.P. Degischer and B. Kriszt, Weinheim: Wiley-VCH, 2002, pp. 5-7.
[4] W. Azzi, W. L. Roberts, and A. A. Rabiei, “Study on pressure drop and heat transfer in open cell metal foams for jet engine applications”, Mat. Design, vol. 28, pp. 569–574,2007.
[5] G. Ambrosio, N. Bianco, W. K.S. Chiu, M. Iasiello, V. Naso, M. Oliviero, “The effect of open-cell metal foams strut shape on convection heat transfer and pressure drop”, Appl. Therm. Eng, no. 103, pp. 333–343, 2016.
[6] K. Hooman, M.R. Malayeri, “Metal foams as gas coolers for exhaust gas recirculation systems subjected to particulate fouling”, Energ. Convers. Manage., vol. 117, pp. 475–481, 2016.
[7] J. F. Despois and A. Mortensen, “Permeability of open-pore microcellular materials”, Acta Materialia, vol. 53, pp. 1381–1388, 2005.
[8] A. Leonov, “Cellular structure for catalysts and filters. Cellular Metals: Manufacture, properties, Applications”, in Proceedings: International Conference on Cellular Metals and Metal Foaming Technology, Berlin, Germany, pp. 47–50, June 2003.
[9] V. P. Rodrigues and M. Innocentini, “Gas permeation through perforated metallic foams”, in Proceedings of Porous Metals and Metallic Foams – Metfoam, Montreal, Canada, pp. 463–466, September 2007.
[10] X. Li, G. Liu, M. Shi, D. Zou, Ch. Wang, J. Zheng, “A novel electro-catalytic ozonation process for treating Rhodamine B using mesoflower-structured TiO2-coated porous titanium gas diffuser anode”, Sep. Purif. Technol, vol. 165, pp. 154–159, 2016.
[11] Ch.-H. Huang, Ch.-Sh. Chang, Sh.-H. Chang, Ch.-J. Tsai, T.-Sh. Shih, D.T. Tang, “Use of porous foam as the substrate of an impactor for respirable aerosol sampling”, Aerosol Sci., no. 36, pp. 1373–1386, 2005.
[12] S. T. Kolaczkowski, S. Awdrya, T. Smith, D. Thomas, L. Torkuhl, R. Kolvenbach, “Potential for metal foams to act as structured catalyst supports in fixed-bed reactors”, Catal. Today, vol. 273, pp. 221–233, 2016.
[13] L. Tianjian, “Ultralight porous metals: from fundamentals to applications”, Acta Mech. Sinica (English Series), vol. 18, no. 5, pp. 457-479, October 2002.
[14] M. S. Hossain, and B. Shabani, “Metal foams application to enhance cooling of open cathode polymer electrolyte membrane fuel cells”, J Power Sources, vol. 295, pp. 275- 291, 2015.
[15] C. Hutter, A. Zenklusen, R. Lang, and Ph. Rudolf von Rohr, “Axial dispersion in metal foams and streamwise-periodic porous media”, Chem. Eng. Sci., vol. 66, pp. 1132–1141, 2011.
[16] J. W. Grate, N. C. Anheier, and D. L. Baldwin, “Progressive Thermal Desorption of Vapo Mixtures from a Preconcentrator with a Porous Metal Foam Internal Architecture and Variable Thermal Ramp Rates”, Anal. Chem., no. 77, pp. 1867-1875, 2005.
[17] J. Banhart, “Properties and Applications of Cast Aluminum Sponges”, Adv. Eng. Mater., vol. 2, no. 4, pp. 188-191, 2000.
[18] P. Ranut, E. Nobile, and L. Mancini, “High resolution X-ray microtomography-based CFD simulation for the characterization of flow permeability and effective thermal conductivity of aluminum metal foams”. Exp. Therm. Fluid Sci., vol. 67, pp. 30–36, 2015.
[19] X.H. Han, Q. Wang, Y. G. Park, C. T’Joen, A. Sommers, and A. Jacobi, “A review of metal foam and metal matrix composites for heat exchangers and heat sinks”, Heat Transf. Eng., vol. 33, pp. 991-1009, 2012.
[20] N. Dukhan, and M. Ali, “Strong wall and transverse size effects on pressure drop of Flow through open-cell metal foam”, Int. J. Therm. Sci., vol. 57, pp. 85-91, 2012.
[21] P. M. Kamath, C. Balaji, and S. P. Venkateshan, “Convection heat transfer from aluminium and copper foams in a vertical channel - an experimental study”, Int. J. Therm. Sci., vol. 64, pp. 1-10, 2013.
[22] K. Boomsma, D. Poulikakos, and F. Zwick, “Metal foams as compact high performance heat exchangers”, Mech. Mater., no. 35, pp. 1161–1176, 2003.
[23] C. T’Joen, P. De Jaeger, H. Huisseune, S. Van Herzeele, N. Vorst, and M. De Paepe, “Thermo-hydraulic study of a single row heat exchanger consisting of metal foam covered round tubes”, Int. J. Heat Mass Transfer, no. 53, pp. 3262–3274, 2010.
[24] Y. Yao, H. Wu, and Z. Liu, “A new prediction model for the effective thermal conductivity of high porosity open-cell metal foams”, Int. J. Therm. Sci., vol. 97, pp. 56-67, 2015.
[25] V. V. Calmidi, and R. L. Mahajan, “Forced convection in high porosity metal foams”, J. Heat Transfer, vol. 122, no. 3, pp. 557-565, 2000.
[26] S. Y. Kim, J. W. Paek, and B. H. Kang. “Flow and heat transfer correlations for porous fin in a plate-fin heat exchanger”, J. Heat Transfer, vol. 122, no. 3, pp. 572-578, 2000.
[27] A. F. Bastawros, “Effectiveness of open-cell metallic foams for high power electronic cooling”, in Thermal Management of Electronics, ASME Proc HTD-361-3/PID-3, pp. 211-217, 1997.
[28] C. Albanakis, D. Missirlis, N. Michailidis, K. Yakinthos, A. Goulas, H. Omar, D. Tsipas, and B. Granier, “Experimental analysis of the pressure drop and heat transfer through metal foams used as volumetric receivers under concentrated solar radiation”, Exp. Therm. Fluid Sci., no. 33, pp. 246–252, 2009.
[29] R. Goodall, J. F. Despois, A. Marmottant, L. Salvo, and A. Mortensen, “The effect of perform processing on replicated aluminium foam structure and mechanical properties”, Scripta Mater., vol. 54, pp. 2069-2073, 2006.
[30] S. Amjad, “Thermal conductivity and noise attenuation in aluminium foams”, M.S. Thesis. University of Cambridge, Cambridge, 2001.
[31] M. Osorno, H. Steeb, D. Uribe, and O. Ruiz, “Estimation of large domain Al foam permeability by finite difference method”, in 84th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM), vol. 13, no. 1, pp. 247–248, December 2013.
[32] S. Kanaun and O. Tkachenko, “Effective conductive properties of open-cell foam”, Int. J. Eng. Sci., vol. 46, pp. 551–571, 2008.
[33] M. S. Phanikumar and R. L. Mahajan, “Non-Darcy natural convection in high porosity metal foams”, Int. J. Heat Mass. Tran., vol. 45, pp. 3781–3793, 2002.
[34] E. Bianchi, T. Heidig, C. Visconti, G. Groppi, H. Freund, and E. Tronconi, “An appraisal of the heat transfer properties of metallic open-cell foams for strongly exo-/endo-thermic catalytic processes in tubular reactors”, Chem. Eng. J., vols. 198–199, pp. 512–528, 2012.
[35] C. Y. Zhao, “Review on thermal transport in high porosity cellular metal foams with open cells”, Int. J. Heat Mass. Tran., vol. 55, pp. 3618–3632, 2012.
[36] R. B. Chandran, R. M. De Smith, and J. H. Davidson, “Model of an integrated solar thermochemical reactor/reticulated ceramic foam heat exchanger for gas-phase heat recovery”, Int. J. Heat Mass. Tran., vol. 81, pp. 404–414, 2015.
[37] J.T. Richardson, D. Remue, and J.-K. Hung, “Properties of ceramic foam catalyst supports: mass and heat transfer”, Appl. Catal. A: General, no. 250, pp. 319–329, 2003.
[38] D.A. Reay, “The use of polymers in heat exchangers”, Heat Recovery Systems and CHP, vol. 9, no. 3, pp. 209-216, 1989.
[39] X. Chen, Y. Su, D. Reay, S. Riffat, “Recent research developments in polymer heat exchangers– A review”, Renew. Sustain. Energ. Rev, vol. 60, pp. 1367–1386, 2016.
[40] C. T’Joena, Y. Parkb, Q. Wangc, A. Sommersd, X. Hanc, A. Jacobib, “A review on polymer heat exchangers for HVAC&R applications”, Int. J. Refrig., vol. 32, pp. 763–779, 2009.
How to Cite
Fernández-Morales, P., Cano-Montoya, C. A., Pérez-Mesa, J. A., & Navacerrada, M. Ángeles. (2016). Thermal and Permeability Properties of Metal Aluminum Foams for Functional Applications. Ingenieria Y Universidad, 21(1), 115–130.
Bioengineering and chemical engineering