Propiedades térmicas y de permeabilidad de espumas metálicas base aluminio para aplicaciones funcionales
PDF (Inglés)

Archivos suplementarios

Untitled

Palabras clave

Aluminio
espumas
permeabilidad
conductividad térmica

Cómo citar

Propiedades térmicas y de permeabilidad de espumas metálicas base aluminio para aplicaciones funcionales. (2016). Ingenieria Y Universidad, 21(1), 115-130. https://doi.org/10.11144/Javeriana.iyu21-1.tppm
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar

Resumen

Objective: to determine the coefficients of permeability and thermal conductivity of aluminum metal foams, thermal transference and pressure drop tests were carried out. Methods: metal foam samples measuring 50 mm in diameter and 20 mm in thickness with pore sizes ranging between 0.5 and 2.0 mm were used for both tests. An adaptation in a fluid flow system was made to perform the pressure drop tests, and Darcy’s law was used to calculate the permeability values. A thermal box test and Fourier’s law were used to obtain the conductivity coefficients. Results: the results showed that the pore size has an important influence on the values of permeability and thermal conductivity. Finally, the results were compared with those reported by other researchers and were found to be consistent with those found in previous work. Conclusions: our interest is to enhance knowledge regarding aluminum metal foams and show their potential use in applications that involve fluid flow and heat transfer.

PDF (Inglés)

[1] J. Banhart, “Manufacture, characterization and application of cellular metals and metal foams”, Prog. Mater. Sci., vol. 46, pp. 559-632, 2001.
[2] M.F. Ashby, A. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson, and H.N.G. Wadley, Metal foams: a design guide, Oxford: Butterworth-Heinemann, 2000.
[3] H.P. Degischer, Handbook of Cellular Materials - Production, Processing, Applications, Eds. H.P. Degischer and B. Kriszt, Weinheim: Wiley-VCH, 2002, pp. 5-7.
[4] W. Azzi, W. L. Roberts, and A. A. Rabiei, “Study on pressure drop and heat transfer in open cell metal foams for jet engine applications”, Mat. Design, vol. 28, pp. 569–574,2007.
[5] G. Ambrosio, N. Bianco, W. K.S. Chiu, M. Iasiello, V. Naso, M. Oliviero, “The effect of open-cell metal foams strut shape on convection heat transfer and pressure drop”, Appl. Therm. Eng, no. 103, pp. 333–343, 2016.
[6] K. Hooman, M.R. Malayeri, “Metal foams as gas coolers for exhaust gas recirculation systems subjected to particulate fouling”, Energ. Convers. Manage., vol. 117, pp. 475–481, 2016.
[7] J. F. Despois and A. Mortensen, “Permeability of open-pore microcellular materials”, Acta Materialia, vol. 53, pp. 1381–1388, 2005.
[8] A. Leonov, “Cellular structure for catalysts and filters. Cellular Metals: Manufacture, properties, Applications”, in Proceedings: International Conference on Cellular Metals and Metal Foaming Technology, Berlin, Germany, pp. 47–50, June 2003.
[9] V. P. Rodrigues and M. Innocentini, “Gas permeation through perforated metallic foams”, in Proceedings of Porous Metals and Metallic Foams – Metfoam, Montreal, Canada, pp. 463–466, September 2007.
[10] X. Li, G. Liu, M. Shi, D. Zou, Ch. Wang, J. Zheng, “A novel electro-catalytic ozonation process for treating Rhodamine B using mesoflower-structured TiO2-coated porous titanium gas diffuser anode”, Sep. Purif. Technol, vol. 165, pp. 154–159, 2016.
[11] Ch.-H. Huang, Ch.-Sh. Chang, Sh.-H. Chang, Ch.-J. Tsai, T.-Sh. Shih, D.T. Tang, “Use of porous foam as the substrate of an impactor for respirable aerosol sampling”, Aerosol Sci., no. 36, pp. 1373–1386, 2005.
[12] S. T. Kolaczkowski, S. Awdrya, T. Smith, D. Thomas, L. Torkuhl, R. Kolvenbach, “Potential for metal foams to act as structured catalyst supports in fixed-bed reactors”, Catal. Today, vol. 273, pp. 221–233, 2016.
[13] L. Tianjian, “Ultralight porous metals: from fundamentals to applications”, Acta Mech. Sinica (English Series), vol. 18, no. 5, pp. 457-479, October 2002.
[14] M. S. Hossain, and B. Shabani, “Metal foams application to enhance cooling of open cathode polymer electrolyte membrane fuel cells”, J Power Sources, vol. 295, pp. 275- 291, 2015.
[15] C. Hutter, A. Zenklusen, R. Lang, and Ph. Rudolf von Rohr, “Axial dispersion in metal foams and streamwise-periodic porous media”, Chem. Eng. Sci., vol. 66, pp. 1132–1141, 2011.
[16] J. W. Grate, N. C. Anheier, and D. L. Baldwin, “Progressive Thermal Desorption of Vapo Mixtures from a Preconcentrator with a Porous Metal Foam Internal Architecture and Variable Thermal Ramp Rates”, Anal. Chem., no. 77, pp. 1867-1875, 2005.
[17] J. Banhart, “Properties and Applications of Cast Aluminum Sponges”, Adv. Eng. Mater., vol. 2, no. 4, pp. 188-191, 2000.
[18] P. Ranut, E. Nobile, and L. Mancini, “High resolution X-ray microtomography-based CFD simulation for the characterization of flow permeability and effective thermal conductivity of aluminum metal foams”. Exp. Therm. Fluid Sci., vol. 67, pp. 30–36, 2015.
[19] X.H. Han, Q. Wang, Y. G. Park, C. T’Joen, A. Sommers, and A. Jacobi, “A review of metal foam and metal matrix composites for heat exchangers and heat sinks”, Heat Transf. Eng., vol. 33, pp. 991-1009, 2012.
[20] N. Dukhan, and M. Ali, “Strong wall and transverse size effects on pressure drop of Flow through open-cell metal foam”, Int. J. Therm. Sci., vol. 57, pp. 85-91, 2012.
[21] P. M. Kamath, C. Balaji, and S. P. Venkateshan, “Convection heat transfer from aluminium and copper foams in a vertical channel - an experimental study”, Int. J. Therm. Sci., vol. 64, pp. 1-10, 2013.
[22] K. Boomsma, D. Poulikakos, and F. Zwick, “Metal foams as compact high performance heat exchangers”, Mech. Mater., no. 35, pp. 1161–1176, 2003.
[23] C. T’Joen, P. De Jaeger, H. Huisseune, S. Van Herzeele, N. Vorst, and M. De Paepe, “Thermo-hydraulic study of a single row heat exchanger consisting of metal foam covered round tubes”, Int. J. Heat Mass Transfer, no. 53, pp. 3262–3274, 2010.
[24] Y. Yao, H. Wu, and Z. Liu, “A new prediction model for the effective thermal conductivity of high porosity open-cell metal foams”, Int. J. Therm. Sci., vol. 97, pp. 56-67, 2015.
[25] V. V. Calmidi, and R. L. Mahajan, “Forced convection in high porosity metal foams”, J. Heat Transfer, vol. 122, no. 3, pp. 557-565, 2000.
[26] S. Y. Kim, J. W. Paek, and B. H. Kang. “Flow and heat transfer correlations for porous fin in a plate-fin heat exchanger”, J. Heat Transfer, vol. 122, no. 3, pp. 572-578, 2000.
[27] A. F. Bastawros, “Effectiveness of open-cell metallic foams for high power electronic cooling”, in Thermal Management of Electronics, ASME Proc HTD-361-3/PID-3, pp. 211-217, 1997.
[28] C. Albanakis, D. Missirlis, N. Michailidis, K. Yakinthos, A. Goulas, H. Omar, D. Tsipas, and B. Granier, “Experimental analysis of the pressure drop and heat transfer through metal foams used as volumetric receivers under concentrated solar radiation”, Exp. Therm. Fluid Sci., no. 33, pp. 246–252, 2009.
[29] R. Goodall, J. F. Despois, A. Marmottant, L. Salvo, and A. Mortensen, “The effect of perform processing on replicated aluminium foam structure and mechanical properties”, Scripta Mater., vol. 54, pp. 2069-2073, 2006.
[30] S. Amjad, “Thermal conductivity and noise attenuation in aluminium foams”, M.S. Thesis. University of Cambridge, Cambridge, 2001.
[31] M. Osorno, H. Steeb, D. Uribe, and O. Ruiz, “Estimation of large domain Al foam permeability by finite difference method”, in 84th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM), vol. 13, no. 1, pp. 247–248, December 2013.
[32] S. Kanaun and O. Tkachenko, “Effective conductive properties of open-cell foam”, Int. J. Eng. Sci., vol. 46, pp. 551–571, 2008.
[33] M. S. Phanikumar and R. L. Mahajan, “Non-Darcy natural convection in high porosity metal foams”, Int. J. Heat Mass. Tran., vol. 45, pp. 3781–3793, 2002.
[34] E. Bianchi, T. Heidig, C. Visconti, G. Groppi, H. Freund, and E. Tronconi, “An appraisal of the heat transfer properties of metallic open-cell foams for strongly exo-/endo-thermic catalytic processes in tubular reactors”, Chem. Eng. J., vols. 198–199, pp. 512–528, 2012.
[35] C. Y. Zhao, “Review on thermal transport in high porosity cellular metal foams with open cells”, Int. J. Heat Mass. Tran., vol. 55, pp. 3618–3632, 2012.
[36] R. B. Chandran, R. M. De Smith, and J. H. Davidson, “Model of an integrated solar thermochemical reactor/reticulated ceramic foam heat exchanger for gas-phase heat recovery”, Int. J. Heat Mass. Tran., vol. 81, pp. 404–414, 2015.
[37] J.T. Richardson, D. Remue, and J.-K. Hung, “Properties of ceramic foam catalyst supports: mass and heat transfer”, Appl. Catal. A: General, no. 250, pp. 319–329, 2003.
[38] D.A. Reay, “The use of polymers in heat exchangers”, Heat Recovery Systems and CHP, vol. 9, no. 3, pp. 209-216, 1989.
[39] X. Chen, Y. Su, D. Reay, S. Riffat, “Recent research developments in polymer heat exchangers– A review”, Renew. Sustain. Energ. Rev, vol. 60, pp. 1367–1386, 2016.
[40] C. T’Joena, Y. Parkb, Q. Wangc, A. Sommersd, X. Hanc, A. Jacobib, “A review on polymer heat exchangers for HVAC&R applications”, Int. J. Refrig., vol. 32, pp. 763–779, 2009.

Una vez aceptado un trabajo para publicación la revista podrá disponer de él en toda su extensión, tanto directamente como a través de intermediarios, ya sea de forma impresa o electrónica, para su publicación ya sea en medio impreso o en medio electrónico, en formatos electrónicos de almacenamiento, en sitios de la Internet propios o de cualquier otro editor. Este uso tiene como fin divulgar el trabajo en la comunidad científica y académica nacional e internacional y no persigue fines de lucro. Para ello el autor o los autores le otorgan el permiso correspondiente a la revista para dicha divulgación mediante autorización escrita.

Todos los articulos aceptados para publicación son sometidos a corrección de estilo. Por tanto el autor /los autores autorizan desde ya los cambios sufridos por el artículo en la corrección de estilo.

El autor o los autores conservarán los derechos morales y patrimoniales del artículo.