Published May 10, 2013


Google Scholar
Search GoogleScholar

Andres Felipe Rojas-Gonzalez, PhD

Juan Manuel Barraza-Burgos, PhD



This paper shows the effect of the Oxygen/Carbon atomic relation (O/C) in carbon on combustion reactivity using the char of three bituminous carbons. Chars were obtained at heating speeds of 104 K/s, temperatures of 900, 1000 and1100 °C, and at three residence times (100, 150 and 300 ms). Maximum combustion reactivity was determined through isothermal thermogravimetric analysis. Results show that the maximum reactivity of chars increases with the reduction of residence time and devolatilization temperature. There is a linear relation between the char’s maximum reactivity and the O/C atomic relation of the precursor carbon, which indicates that the increase in the amount of oxygen contained in the precursor carbon of the chars generates a significant increase in the reactivity of the chars.


O/C atomic relation, maximum reactivity, char, pulverized carbon, combustionRelación atómica O/C, reactividad máxima, carbonizados, carbón pulverizado, combustión.

ARENILLAS A. Influencia del proceso de desvolatilización sobre la reducción de emisiones de óxidos de nitrógeno en la combustión del carbón. Tesis doctoral, Universidad de Oviedo, Departamento de Ingeniería Química, Oviedo, España, 1998.
ARENILLAS, A.; RUBIERA, F.; PEVIDA, C. y PIS, J. J. A comparison of different methods for predicting coal devolatilisation kinetics. Journal of Analytical and Applied Pyrolysis. 2001, vol. 58-59, pp. 685-701.
ARENILLAS, A.; RUBIERA, F.; PIS, J. J.; JONES, J. M. y WILLIAMS, A. The effect of the textural properties of bituminous coal chars on NO emissions. Fuel. 1999, vol. 78, núm. 14, pp. 1779-1785.
ARTOS, V. y SCARONI, A. W. TGA and drop-tubo reactor studies of the combustion of coal blends. Fuel. 1993, vol. 73, núm. 7, pp. 927-933.
BEND, S.; EDWARDS, I. y MARSH, H. The influence of rank upon char morphology and combustion. Fuel. 1992, vol. 71, pp. 493-501.
CAI, H.-Y.; MESSENBOCK, R.; DIX, M.; DUGWELL, D. R. y KANDIYOTI, R. Pyrolysis of coal maceral concentrates under pf-combustion conditions (I): changes in volatile reléase and char combustibility as a function of rank. Fuel. 1998, vol. 77, núm. 12, pp. 1273-1282.
CUMMING, J. W. A DTG combustion study on anthracitic and other coal chars. Thermochimica Acta. 1989, vol. 155, pp. 151-161.
CUMMING, J. W. Reactivity assessment of coal via a weighted mean activation energy. Fuel. 1984, vol. 63, pp. 1436-1438.
De la PUENTE, G.; FUENTE, E. y PIS, J. J. Reactivity of pyrolysis chars related to precursor coal chemistry. Journal of Analytical and Applied Pyrolysis. 2000, vol. 53, pp. 81-93.
GALE, T.; BARTHOLOMEW, C. y FLETCHER, T. Effects of pyrolysis heating rate on intrinsic reactivities of coal chars. Energy and Fuels. 1996, vol. 10, pp. 766-775.
HAYAMIZU, K. y OHSHIMA, S. Characteristic diagrams of coal-derived liquids: the correlation between aromaticity and atomic H/C ratios. Fuel. 1985, vol. 64, núm. 1, pp. 130-133.
JENKINS, R.; NANDI, S. y WALKER, P. Reactivity of heat-treated coals in air at 500 ºC. Fuel. 1973, vol. 52, pp. 288-293.
KALAITZIDIS, S.; SIAVALAS, G.; SKARPELIS, N.; ARAUJO, C.V. y CHRISTANIS, K. Late cretaceous coal overlying karstic bauxite deposits in the Parnassus-Ghiona Unit, Central Greece: Coal characteristics and depositional environment. International Journal of Coal Geology. 2010, vol. 81, pp. 211-226.
OGALA, J.; SIAVALAS, G. y CHRISTANIS, K. Coal petrography, mineralogy and geochemistry of lignite samples from the Ogwashi–Asaba Formation, Nigeria. Journal of African Earth Sciences. 2012, vols. 66-67, pp. 35-45.
POHLMANN, J.; OSORIO, E.; VILELA, A. y BORREGO, A. Reactivity to CO2 of chars prepared in O2/N2 and O2/CO2 mixtures for pulverized coal injection (PCI) in blast furnace in relation to char petrographic characteristics. International Journal of Coal Geology. 2010, vol. 84, pp. 293-300.
ROJAS, A. F. Reactividad en la combustión de carbones beneficiados. Tesis de maestría, Escuela de Ingeniería Química, Programa de Postgrado en Ingeniería Química, Universidad del Valle, Cali, Colombia, 2002.
ROJAS, A. F. y BARRAZA, J. M. Características termogravimétricas de carbonizados obtenidos a altas velocidades de calentamiento. Revista Ingeniería e Investigación. 2009, vol. 29, núm. 2, pp. 25-34.
ROJAS, A. F. y BARRAZA, J. M. Caracterización morfológica del carbonizado de carbones pulverizados: determinación experimental. Revista de la Facultad de Ingeniería de la Universidad de Antioquia. 2008, vol. 43, pp. 7-17.
ROJAS, A. F.; BARRAZA, J. M.; URHÁN, M. y CHÁVEZ, A. Effect of mineral matter on coal combustion reactivity. Proceedings of the 27th International Technical Conference on Coal Utilization and Fuel Systems, Sheraton Sand Key Clearwater, Florida, USA. 2002, pp. 325-331.
SAXBY, J. D. Atomic H/C ratios and the generation of oil from coals and kerogens. Fuel. 1980, vol. 59, núm. 5, pp. 305-307.
SEEBAUER, V.; PETEK, J. y TAUDINGER, G. Effects of particle size, heating rate and pressure on measurement of pyrolysis kinetics by thermogravimetric analysis. Fuel. 1997, vol. 73, núm. 13, pp. 1277-1282.
STRUGNELL, B. y PATRICK, J. Hydropyrolysis yields in relation to coal properties. Fuel. 1995, vol. 74, núm. 4, pp. 481-486.
SUÁREZ-RUIZ, I.; FLORES, D.; MENDONÇA, J. G. y HACKLEY, P. C. Review and update of the applications of organic petrology: Part 1, geological applications. International Journal of Coal Geology. 2012, vol. 99, pp. 54-112.
URHÁN, R. M. Mejora de la eficiencia de la combustión de carbones utilizados en el Valle del Cauca mediante un estudio previo de su reactividad. Informe final presentado a Ecocarbon-Colciencias, Universidad del Valle, Cali, 2000.
WAGONER, C. L. y WINERGARTNER, E.C. Further development of the burning profile. Journal of Engineering for Power. 1973, pp. 119-123.
WANG, J.; DU, J.; CHANG, L. y XIE, K. Study on the structure and pyrolysis characteristics of Chinese western coals. Fuel Processing Technology. 2010a, vol. 91, pp. 430-433.
WANG, S.; TANG, Y.; SCHABERT, H.; MITCHELL, F. y LIU, Z. A thermal behavior study of Chinese coals with high hydrogen content. International Journal of Coal Geology. 2010b, vol. 81, pp. 37-44.
WANG S.; TANG, Y.; SCHOBERT, H. H.; GUO, Q. y WANG, F. Liquefaction reactivity and 13 C-NMR of coals rich in barkinite and semifusinite. Journal of Fuel Chemistry and Technology. 2010c, vol. 38, No. 2, pp. 129-133.
YAN, C.; YAN, Y.; LIU, M.; NIE, M. y ZHOU, J.L. Phenanthrene sorption to Chinese coal: Importance of coal’s geochemical properties. Journal of Hazardous Materials. 2011, vol. 192, pp. 86-92.
How to Cite
Rojas-Gonzalez, A. F., & Barraza-Burgos, J. M. (2013). Effects of the Oxygen/Carbon Atomic Relation in Carbon on the Reactivity in Char Combustion. Ingenieria Y Universidad, 17(1), 41–58.

Most read articles by the same author(s)